Redetermination of clinobarylite, BaBe2Si2O7
Clinobarylite, ideally BaBe2Si2O7 (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with barylite. It belongs to a group of compounds characterized by the general formula BaM2+2Si2O7, with M2+ = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-memb...
Published in: | Acta Crystallographica Section E Structure Reports Online |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
International Union of Crystallography
2012
|
Subjects: | |
Online Access: | https://doi.org/10.1107/S1600536812040457 https://doaj.org/article/603c16c2e9e54a699b5d1c18ab3dac6e |
Summary: | Clinobarylite, ideally BaBe2Si2O7 (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with barylite. It belongs to a group of compounds characterized by the general formula BaM2+2Si2O7, with M2+ = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobarylite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobarylite can be considered as a framework of BeO4 and SiO4 tetrahedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO4 tetrahedra share corners, forming chains parallel to the c axis, which are interlinked by the Si2O7 units oriented parallel to the a axis. The Ba2+ cations (site symmetry m.) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si—Obr (bridging O atom, at site symmetry m.) bond length, the Si—Onbr (non-bridging O atoms) bond lengths, and the Si—O—Si angle within the Si2O7 unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004). N. Jb. Miner. Mh. pp. 373–384]. |
---|