New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea

In a warming Arctic the increased occurrence of new particle formation (NPF) is believed to originate from the declining ice coverage during summertime. Understanding the physico-chemical properties of newly formed particles, as well as mechanisms that control both particle formation and growth in t...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: S. Kecorius, T. Vogl, P. Paasonen, J. Lampilahti, D. Rothenberg, H. Wex, S. Zeppenfeld, M. van Pinxteren, M. Hartmann, S. Henning, X. Gong, A. Welti, M. Kulmala, F. Stratmann, H. Herrmann, A. Wiedensohler
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2019
Subjects:
Online Access:https://doi.org/10.5194/acp-19-14339-2019
https://doaj.org/article/60318f30f43941249473a53800f0a387
id ftdoajarticles:oai:doaj.org/article:60318f30f43941249473a53800f0a387
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:60318f30f43941249473a53800f0a387 2023-05-15T14:48:43+02:00 New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea S. Kecorius T. Vogl P. Paasonen J. Lampilahti D. Rothenberg H. Wex S. Zeppenfeld M. van Pinxteren M. Hartmann S. Henning X. Gong A. Welti M. Kulmala F. Stratmann H. Herrmann A. Wiedensohler 2019-11-01T00:00:00Z https://doi.org/10.5194/acp-19-14339-2019 https://doaj.org/article/60318f30f43941249473a53800f0a387 EN eng Copernicus Publications https://www.atmos-chem-phys.net/19/14339/2019/acp-19-14339-2019.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-19-14339-2019 1680-7316 1680-7324 https://doaj.org/article/60318f30f43941249473a53800f0a387 Atmospheric Chemistry and Physics, Vol 19, Pp 14339-14364 (2019) Physics QC1-999 Chemistry QD1-999 article 2019 ftdoajarticles https://doi.org/10.5194/acp-19-14339-2019 2022-12-31T12:17:05Z In a warming Arctic the increased occurrence of new particle formation (NPF) is believed to originate from the declining ice coverage during summertime. Understanding the physico-chemical properties of newly formed particles, as well as mechanisms that control both particle formation and growth in this pristine environment, is important for interpreting aerosol–cloud interactions, to which the Arctic climate can be highly sensitive. In this investigation, we present the analysis of NPF and growth in the high summer Arctic. The measurements were made on-board research vessel Polarstern during the PS106 Arctic expedition. Four distinctive NPF and subsequent particle growth events were observed, during which particle (diameter in a range 10–50 nm) number concentrations increased from background values of approx. 40 up to 4000 cm −3 . Based on particle formation and growth rates, as well as hygroscopicity of nucleation and the Aitken mode particles, we distinguished two different types of NPF events. First, some NPF events were favored by negative ions, resulting in more-hygroscopic nucleation mode particles and suggesting sulfuric acid as a precursor gas. Second, other NPF events resulted in less-hygroscopic particles, indicating the influence of organic vapors on particle formation and growth. To test the climatic relevance of NPF and its influence on the cloud condensation nuclei (CCN) budget in the Arctic, we applied a zero-dimensional, adiabatic cloud parcel model. At an updraft velocity of 0.1 m s −1 , the particle number size distribution (PNSD) generated during nucleation processes resulted in an increase in the CCN number concentration by a factor of 2 to 5 compared to the background CCN concentrations. This result was confirmed by the directly measured CCN number concentrations. Although particles did not grow beyond 50 nm in diameter and the activated fraction of 15–50 nm particles was on average below 10 %, it could be shown that the sheer number of particles produced by the nucleation process is enough ... Article in Journal/Newspaper Arctic Barents Sea Fram Strait Directory of Open Access Journals: DOAJ Articles Arctic Barents Sea Aitken ENVELOPE(-44.516,-44.516,-60.733,-60.733) Atmospheric Chemistry and Physics 19 22 14339 14364
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
S. Kecorius
T. Vogl
P. Paasonen
J. Lampilahti
D. Rothenberg
H. Wex
S. Zeppenfeld
M. van Pinxteren
M. Hartmann
S. Henning
X. Gong
A. Welti
M. Kulmala
F. Stratmann
H. Herrmann
A. Wiedensohler
New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea
topic_facet Physics
QC1-999
Chemistry
QD1-999
description In a warming Arctic the increased occurrence of new particle formation (NPF) is believed to originate from the declining ice coverage during summertime. Understanding the physico-chemical properties of newly formed particles, as well as mechanisms that control both particle formation and growth in this pristine environment, is important for interpreting aerosol–cloud interactions, to which the Arctic climate can be highly sensitive. In this investigation, we present the analysis of NPF and growth in the high summer Arctic. The measurements were made on-board research vessel Polarstern during the PS106 Arctic expedition. Four distinctive NPF and subsequent particle growth events were observed, during which particle (diameter in a range 10–50 nm) number concentrations increased from background values of approx. 40 up to 4000 cm −3 . Based on particle formation and growth rates, as well as hygroscopicity of nucleation and the Aitken mode particles, we distinguished two different types of NPF events. First, some NPF events were favored by negative ions, resulting in more-hygroscopic nucleation mode particles and suggesting sulfuric acid as a precursor gas. Second, other NPF events resulted in less-hygroscopic particles, indicating the influence of organic vapors on particle formation and growth. To test the climatic relevance of NPF and its influence on the cloud condensation nuclei (CCN) budget in the Arctic, we applied a zero-dimensional, adiabatic cloud parcel model. At an updraft velocity of 0.1 m s −1 , the particle number size distribution (PNSD) generated during nucleation processes resulted in an increase in the CCN number concentration by a factor of 2 to 5 compared to the background CCN concentrations. This result was confirmed by the directly measured CCN number concentrations. Although particles did not grow beyond 50 nm in diameter and the activated fraction of 15–50 nm particles was on average below 10 %, it could be shown that the sheer number of particles produced by the nucleation process is enough ...
format Article in Journal/Newspaper
author S. Kecorius
T. Vogl
P. Paasonen
J. Lampilahti
D. Rothenberg
H. Wex
S. Zeppenfeld
M. van Pinxteren
M. Hartmann
S. Henning
X. Gong
A. Welti
M. Kulmala
F. Stratmann
H. Herrmann
A. Wiedensohler
author_facet S. Kecorius
T. Vogl
P. Paasonen
J. Lampilahti
D. Rothenberg
H. Wex
S. Zeppenfeld
M. van Pinxteren
M. Hartmann
S. Henning
X. Gong
A. Welti
M. Kulmala
F. Stratmann
H. Herrmann
A. Wiedensohler
author_sort S. Kecorius
title New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea
title_short New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea
title_full New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea
title_fullStr New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea
title_full_unstemmed New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea
title_sort new particle formation and its effect on cloud condensation nuclei abundance in the summer arctic: a case study in the fram strait and barents sea
publisher Copernicus Publications
publishDate 2019
url https://doi.org/10.5194/acp-19-14339-2019
https://doaj.org/article/60318f30f43941249473a53800f0a387
long_lat ENVELOPE(-44.516,-44.516,-60.733,-60.733)
geographic Arctic
Barents Sea
Aitken
geographic_facet Arctic
Barents Sea
Aitken
genre Arctic
Barents Sea
Fram Strait
genre_facet Arctic
Barents Sea
Fram Strait
op_source Atmospheric Chemistry and Physics, Vol 19, Pp 14339-14364 (2019)
op_relation https://www.atmos-chem-phys.net/19/14339/2019/acp-19-14339-2019.pdf
https://doaj.org/toc/1680-7316
https://doaj.org/toc/1680-7324
doi:10.5194/acp-19-14339-2019
1680-7316
1680-7324
https://doaj.org/article/60318f30f43941249473a53800f0a387
op_doi https://doi.org/10.5194/acp-19-14339-2019
container_title Atmospheric Chemistry and Physics
container_volume 19
container_issue 22
container_start_page 14339
op_container_end_page 14364
_version_ 1766319807000477696