Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region
Plankton respiration (R) is a key factor governing the ocean carbon cycle. However, although the ocean supports respiratory activity throughout its entire volume, to our knowledge there are no studies that tackle both the spatial and temporal variability of respiration in the dark ocean and its depe...
Published in: | Frontiers in Earth Science |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Frontiers Media S.A.
2020
|
Subjects: | |
Online Access: | https://doi.org/10.3389/feart.2020.00349 https://doaj.org/article/5bbb39fd53fa41299440091d3cbf7b7b |
id |
ftdoajarticles:oai:doaj.org/article:5bbb39fd53fa41299440091d3cbf7b7b |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:5bbb39fd53fa41299440091d3cbf7b7b 2023-05-15T17:35:57+02:00 Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region Javier Arístegui María F. Montero Nauzet Hernández-Hernández Iván J. Alonso-González Federico Baltar Maria Ll. Calleja Carlos M. Duarte 2020-08-01T00:00:00Z https://doi.org/10.3389/feart.2020.00349 https://doaj.org/article/5bbb39fd53fa41299440091d3cbf7b7b EN eng Frontiers Media S.A. https://www.frontiersin.org/article/10.3389/feart.2020.00349/full https://doaj.org/toc/2296-6463 2296-6463 doi:10.3389/feart.2020.00349 https://doaj.org/article/5bbb39fd53fa41299440091d3cbf7b7b Frontiers in Earth Science, Vol 8 (2020) mesopelagic respiration variability ETS activity suspended and sinking particulate organic carbon dissolved organic carbon Canary Current upwelling region Science Q article 2020 ftdoajarticles https://doi.org/10.3389/feart.2020.00349 2022-12-31T13:16:51Z Plankton respiration (R) is a key factor governing the ocean carbon cycle. However, although the ocean supports respiratory activity throughout its entire volume, to our knowledge there are no studies that tackle both the spatial and temporal variability of respiration in the dark ocean and its dependence on organic carbon sources. Here, we have studied the variability of epipelagic and mesopelagic R via the enzymatic activity of the electron transport system (ETS) in microbial communities, along two zonal sections (21°N and 26°N) extending from the northwest African coastal upwelling to the open-ocean waters of the North Atlantic subtropical gyre, during the fall 2002 and the spring 2003. Overall, integrated R in epipelagic (Repi; 0–200 m) waters, was similar during the two periods, while integrated mesopelagic respiration (Rmeso; 200–1000 m) was >25% higher in the fall. The two seasons, however, exhibited contrasting zonal and meridional patterns of ETS distribution in the water column, largely influenced by upwelling effects and associated mesoscale variability. Multiple linear regression between average R and average concentrations of dissolved organic carbon (DOC) and slow-sinking (suspended) particulate organic carbon (POCsus) indicates that POCsus is the main contributor to Rmeso, supporting previous results in the same area. Rmeso exceeded satellite-derived net primary production (NPP) at all stations except at the most coastal ones, with the imbalance increasing offshore. Moreover, the export flux of sinking POC collected at 200 m with sediment traps, represented on average less than 6% of the NPP. All this indicates that Rmeso depends largely on small particles with low sinking rates, which would be laterally advected at mid water depths from the continental margin toward the open ocean, or transported by mesoscale features from the surface to the mesopelagic ocean, providing support to inferences from modeling studies in the region. Article in Journal/Newspaper North Atlantic Directory of Open Access Journals: DOAJ Articles Frontiers in Earth Science 8 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
mesopelagic respiration variability ETS activity suspended and sinking particulate organic carbon dissolved organic carbon Canary Current upwelling region Science Q |
spellingShingle |
mesopelagic respiration variability ETS activity suspended and sinking particulate organic carbon dissolved organic carbon Canary Current upwelling region Science Q Javier Arístegui María F. Montero Nauzet Hernández-Hernández Iván J. Alonso-González Federico Baltar Maria Ll. Calleja Carlos M. Duarte Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region |
topic_facet |
mesopelagic respiration variability ETS activity suspended and sinking particulate organic carbon dissolved organic carbon Canary Current upwelling region Science Q |
description |
Plankton respiration (R) is a key factor governing the ocean carbon cycle. However, although the ocean supports respiratory activity throughout its entire volume, to our knowledge there are no studies that tackle both the spatial and temporal variability of respiration in the dark ocean and its dependence on organic carbon sources. Here, we have studied the variability of epipelagic and mesopelagic R via the enzymatic activity of the electron transport system (ETS) in microbial communities, along two zonal sections (21°N and 26°N) extending from the northwest African coastal upwelling to the open-ocean waters of the North Atlantic subtropical gyre, during the fall 2002 and the spring 2003. Overall, integrated R in epipelagic (Repi; 0–200 m) waters, was similar during the two periods, while integrated mesopelagic respiration (Rmeso; 200–1000 m) was >25% higher in the fall. The two seasons, however, exhibited contrasting zonal and meridional patterns of ETS distribution in the water column, largely influenced by upwelling effects and associated mesoscale variability. Multiple linear regression between average R and average concentrations of dissolved organic carbon (DOC) and slow-sinking (suspended) particulate organic carbon (POCsus) indicates that POCsus is the main contributor to Rmeso, supporting previous results in the same area. Rmeso exceeded satellite-derived net primary production (NPP) at all stations except at the most coastal ones, with the imbalance increasing offshore. Moreover, the export flux of sinking POC collected at 200 m with sediment traps, represented on average less than 6% of the NPP. All this indicates that Rmeso depends largely on small particles with low sinking rates, which would be laterally advected at mid water depths from the continental margin toward the open ocean, or transported by mesoscale features from the surface to the mesopelagic ocean, providing support to inferences from modeling studies in the region. |
format |
Article in Journal/Newspaper |
author |
Javier Arístegui María F. Montero Nauzet Hernández-Hernández Iván J. Alonso-González Federico Baltar Maria Ll. Calleja Carlos M. Duarte |
author_facet |
Javier Arístegui María F. Montero Nauzet Hernández-Hernández Iván J. Alonso-González Federico Baltar Maria Ll. Calleja Carlos M. Duarte |
author_sort |
Javier Arístegui |
title |
Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region |
title_short |
Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region |
title_full |
Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region |
title_fullStr |
Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region |
title_full_unstemmed |
Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region |
title_sort |
variability in water-column respiration and its dependence on organic carbon sources in the canary current upwelling region |
publisher |
Frontiers Media S.A. |
publishDate |
2020 |
url |
https://doi.org/10.3389/feart.2020.00349 https://doaj.org/article/5bbb39fd53fa41299440091d3cbf7b7b |
genre |
North Atlantic |
genre_facet |
North Atlantic |
op_source |
Frontiers in Earth Science, Vol 8 (2020) |
op_relation |
https://www.frontiersin.org/article/10.3389/feart.2020.00349/full https://doaj.org/toc/2296-6463 2296-6463 doi:10.3389/feart.2020.00349 https://doaj.org/article/5bbb39fd53fa41299440091d3cbf7b7b |
op_doi |
https://doi.org/10.3389/feart.2020.00349 |
container_title |
Frontiers in Earth Science |
container_volume |
8 |
_version_ |
1766135269845630976 |