Modeling the Dynamic Landscape Evolution of a Volcanic Coastal Environment Under Future Climate Trajectories

As anthropogenic forcing continues to rapidly modify worldwide climate, impacts on landscape changes will grow. Olivine weathering is a natural process that sequesters carbon out of the atmosphere, but is now being proposed as a strategy that can be artificially implemented to assist in the mitigati...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Kyle Manley, T. Salles, R. D. Müller
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2020
Subjects:
Q
Online Access:https://doi.org/10.3389/feart.2020.550312
https://doaj.org/article/598a493d7d9e47af9d7c1aa028bb5ef5
id ftdoajarticles:oai:doaj.org/article:598a493d7d9e47af9d7c1aa028bb5ef5
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:598a493d7d9e47af9d7c1aa028bb5ef5 2023-05-15T13:35:05+02:00 Modeling the Dynamic Landscape Evolution of a Volcanic Coastal Environment Under Future Climate Trajectories Kyle Manley T. Salles R. D. Müller 2020-10-01T00:00:00Z https://doi.org/10.3389/feart.2020.550312 https://doaj.org/article/598a493d7d9e47af9d7c1aa028bb5ef5 EN eng Frontiers Media S.A. https://www.frontiersin.org/article/10.3389/feart.2020.550312/full https://doaj.org/toc/2296-6463 2296-6463 doi:10.3389/feart.2020.550312 https://doaj.org/article/598a493d7d9e47af9d7c1aa028bb5ef5 Frontiers in Earth Science, Vol 8 (2020) enhanced silicate weathering sedimentation climate change landscape evolution carbon sequestration olivine Science Q article 2020 ftdoajarticles https://doi.org/10.3389/feart.2020.550312 2022-12-31T03:24:56Z As anthropogenic forcing continues to rapidly modify worldwide climate, impacts on landscape changes will grow. Olivine weathering is a natural process that sequesters carbon out of the atmosphere, but is now being proposed as a strategy that can be artificially implemented to assist in the mitigation of anthropogenic carbon emissions. We use the landscape evolution model Badlands to identify a region (Tweed Caldera catchment in Eastern Australia) that has the potential for naturally enhanced supply of mafic sediments, known to be a carbon sink, into coastal environments. Although reality is more complex than what can be captured within a model, our models have the ability to unravel and estimate how erosion of volcanic edifices and landscape dynamics will react to future climate change projections. Local climate projections were taken from the Australian government and the IPCC in the form of four alternative pathways. Three additional scenarios were designed, with added contributions from the Antarctic Ice Sheet, to better understand how the landscape/dynamics might be impacted by an increase in sea level rise due to ice sheet tipping points being hit. Three scenarios were run with sea level held constant and precipitation rates increased in order to better understand the role that precipitation and sea level plays in the regional supply of sediment. Changes between scenarios are highly dependent upon the rate and magnitude of climatic change. We estimate the volume of mafic sediment supplied to the erosive environment within the floodplain (ranging from ∼27 to 30 million m3 by 2100 and ∼78–315 million m3 by 2500), the average amount of olivine within the supplied sediment under the most likely scenarios (∼7.6 million m3 by 2100 and ∼30 million m3 by 2500), and the amount of CO2 that is subsequently sequestered (∼53–73 million tons by 2100 and ∼206–284 million tons by 2500). Our approach not only identifies a region that can be further studied in order to evaluate the efficacy and impact of enhanced silicate ... Article in Journal/Newspaper Antarc* Antarctic Ice Sheet Directory of Open Access Journals: DOAJ Articles Antarctic The Antarctic Frontiers in Earth Science 8
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic enhanced silicate weathering
sedimentation
climate change
landscape evolution
carbon sequestration
olivine
Science
Q
spellingShingle enhanced silicate weathering
sedimentation
climate change
landscape evolution
carbon sequestration
olivine
Science
Q
Kyle Manley
T. Salles
R. D. Müller
Modeling the Dynamic Landscape Evolution of a Volcanic Coastal Environment Under Future Climate Trajectories
topic_facet enhanced silicate weathering
sedimentation
climate change
landscape evolution
carbon sequestration
olivine
Science
Q
description As anthropogenic forcing continues to rapidly modify worldwide climate, impacts on landscape changes will grow. Olivine weathering is a natural process that sequesters carbon out of the atmosphere, but is now being proposed as a strategy that can be artificially implemented to assist in the mitigation of anthropogenic carbon emissions. We use the landscape evolution model Badlands to identify a region (Tweed Caldera catchment in Eastern Australia) that has the potential for naturally enhanced supply of mafic sediments, known to be a carbon sink, into coastal environments. Although reality is more complex than what can be captured within a model, our models have the ability to unravel and estimate how erosion of volcanic edifices and landscape dynamics will react to future climate change projections. Local climate projections were taken from the Australian government and the IPCC in the form of four alternative pathways. Three additional scenarios were designed, with added contributions from the Antarctic Ice Sheet, to better understand how the landscape/dynamics might be impacted by an increase in sea level rise due to ice sheet tipping points being hit. Three scenarios were run with sea level held constant and precipitation rates increased in order to better understand the role that precipitation and sea level plays in the regional supply of sediment. Changes between scenarios are highly dependent upon the rate and magnitude of climatic change. We estimate the volume of mafic sediment supplied to the erosive environment within the floodplain (ranging from ∼27 to 30 million m3 by 2100 and ∼78–315 million m3 by 2500), the average amount of olivine within the supplied sediment under the most likely scenarios (∼7.6 million m3 by 2100 and ∼30 million m3 by 2500), and the amount of CO2 that is subsequently sequestered (∼53–73 million tons by 2100 and ∼206–284 million tons by 2500). Our approach not only identifies a region that can be further studied in order to evaluate the efficacy and impact of enhanced silicate ...
format Article in Journal/Newspaper
author Kyle Manley
T. Salles
R. D. Müller
author_facet Kyle Manley
T. Salles
R. D. Müller
author_sort Kyle Manley
title Modeling the Dynamic Landscape Evolution of a Volcanic Coastal Environment Under Future Climate Trajectories
title_short Modeling the Dynamic Landscape Evolution of a Volcanic Coastal Environment Under Future Climate Trajectories
title_full Modeling the Dynamic Landscape Evolution of a Volcanic Coastal Environment Under Future Climate Trajectories
title_fullStr Modeling the Dynamic Landscape Evolution of a Volcanic Coastal Environment Under Future Climate Trajectories
title_full_unstemmed Modeling the Dynamic Landscape Evolution of a Volcanic Coastal Environment Under Future Climate Trajectories
title_sort modeling the dynamic landscape evolution of a volcanic coastal environment under future climate trajectories
publisher Frontiers Media S.A.
publishDate 2020
url https://doi.org/10.3389/feart.2020.550312
https://doaj.org/article/598a493d7d9e47af9d7c1aa028bb5ef5
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
Ice Sheet
genre_facet Antarc*
Antarctic
Ice Sheet
op_source Frontiers in Earth Science, Vol 8 (2020)
op_relation https://www.frontiersin.org/article/10.3389/feart.2020.550312/full
https://doaj.org/toc/2296-6463
2296-6463
doi:10.3389/feart.2020.550312
https://doaj.org/article/598a493d7d9e47af9d7c1aa028bb5ef5
op_doi https://doi.org/10.3389/feart.2020.550312
container_title Frontiers in Earth Science
container_volume 8
_version_ 1766060774040535040