Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring

Vertical profiles of the mass concentration of black carbon (BC) were measured at altitudes up to 5 km during the PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model simulation Project) aircraft-based field experiment conducted around the northern Greenland Sea (Fram Strait) dur...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: S. Ohata, M. Koike, A. Yoshida, N. Moteki, K. Adachi, N. Oshima, H. Matsui, O. Eppers, H. Bozem, M. Zanatta, A. B. Herber
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2021
Subjects:
Online Access:https://doi.org/10.5194/acp-21-15861-2021
https://doaj.org/article/584071f0dc7c47f7b658ae8698f1fb96
Description
Summary:Vertical profiles of the mass concentration of black carbon (BC) were measured at altitudes up to 5 km during the PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model simulation Project) aircraft-based field experiment conducted around the northern Greenland Sea (Fram Strait) during March and April 2018 from operation base Station Nord (81.6 ∘ N, 16.7 ∘ W). Median BC mass concentrations in individual altitude ranges were 7–18 ng m −3 at standard temperature and pressure at altitudes below 4.5 km. These concentrations were systematically lower than previous observations in the Arctic in spring, conducted by ARCTAS-A in 2008 and NETCARE in 2015, and similar to those observed during HIPPO3 in 2010. Column amounts of BC for altitudes below 5 km in the Arctic ( > 66.5 ∘ N; COL BC ), observed during the ARCTAS-A and NETCARE experiments, were higher by factors of 4.2 and 2.7, respectively, than those of the PAMARCMiP experiment. These differences could not be explained solely by the different locations of the experiments. The year-to-year variation of COL BC values generally corresponded to that of biomass burning activities in northern midlatitudes over western and eastern Eurasia. Furthermore, numerical model simulations estimated the year-to-year variation of contributions from anthropogenic sources to be smaller than 30 %–40 %. These results suggest that the year-to-year variation of biomass burning activities likely affected BC amounts in the Arctic troposphere in spring, at least in the years examined in this study. The year-to-year variations in BC mass concentrations were also observed at the surface at high Arctic sites Ny-Ålesund and Utqiaġvik (formerly known as Barrow, the location of Barrow Atmospheric Baseline Observatory), although their magnitudes were slightly lower than those in COL BC . Numerical model simulations in general successfully reproduced the observed COL BC values for PAMARCMiP and HIPPO3 (within a factor of 2), whereas they markedly underestimated the values for ...