Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization

The space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> of centered m -planes is considered in projective space <math display="inline"> <semantics> <msub> <mi>P</mi> <mi>n</mi> <...

Full description

Bibliographic Details
Published in:Mathematics
Main Author: Olga Belova
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2019
Subjects:
Online Access:https://doi.org/10.3390/math7100901
https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70
_version_ 1821575386768605184
author Olga Belova
author_facet Olga Belova
author_sort Olga Belova
collection Directory of Open Access Journals: DOAJ Articles
container_issue 10
container_start_page 901
container_title Mathematics
container_volume 7
description The space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> of centered m -planes is considered in projective space <math display="inline"> <semantics> <msub> <mi>P</mi> <mi>n</mi> </msub> </semantics> </math> . A principal bundle is associated with the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> and a group connection is given on the principal bundle. The connection is not uniquely induced at the normalization of the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> . Semi-normalized spaces <math display="inline"> <semantics> <msup> <mo>Π</mo> <mn>1</mn> </msup> </semantics> </math> , <math display="inline"> <semantics> <msup> <mo>Π</mo> <mn>2</mn> </msup> </semantics> </math> and normalized space <math display="inline"> <semantics> <msup> <mo>Π</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> are investigated. By virtue of the Cartan−Laptev method, the dynamics of changes of corresponding bundles, group connection objects, curvature and torsion of the connections are discovered at a transition from the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> to the normalized space <math display="inline"> <semantics> <msup> <mo>Π</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> .
format Article in Journal/Newspaper
genre laptev
genre_facet laptev
id ftdoajarticles:oai:doaj.org/article:56adf3c717cb45c1ab3b80c881255b70
institution Open Polar
language English
op_collection_id ftdoajarticles
op_doi https://doi.org/10.3390/math7100901
op_relation https://www.mdpi.com/2227-7390/7/10/901
https://doaj.org/toc/2227-7390
2227-7390
doi:10.3390/math7100901
https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70
op_source Mathematics, Vol 7, Iss 10, p 901 (2019)
publishDate 2019
publisher MDPI AG
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:56adf3c717cb45c1ab3b80c881255b70 2025-01-16T22:58:37+00:00 Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization Olga Belova 2019-09-01T00:00:00Z https://doi.org/10.3390/math7100901 https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70 EN eng MDPI AG https://www.mdpi.com/2227-7390/7/10/901 https://doaj.org/toc/2227-7390 2227-7390 doi:10.3390/math7100901 https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70 Mathematics, Vol 7, Iss 10, p 901 (2019) differentiable manifold cartan–laptev method space of centered planes normalization reduction connection Mathematics QA1-939 article 2019 ftdoajarticles https://doi.org/10.3390/math7100901 2022-12-31T15:05:11Z The space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> of centered m -planes is considered in projective space <math display="inline"> <semantics> <msub> <mi>P</mi> <mi>n</mi> </msub> </semantics> </math> . A principal bundle is associated with the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> and a group connection is given on the principal bundle. The connection is not uniquely induced at the normalization of the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> . Semi-normalized spaces <math display="inline"> <semantics> <msup> <mo>Π</mo> <mn>1</mn> </msup> </semantics> </math> , <math display="inline"> <semantics> <msup> <mo>Π</mo> <mn>2</mn> </msup> </semantics> </math> and normalized space <math display="inline"> <semantics> <msup> <mo>Π</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> are investigated. By virtue of the Cartan−Laptev method, the dynamics of changes of corresponding bundles, group connection objects, curvature and torsion of the connections are discovered at a transition from the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> to the normalized space <math display="inline"> <semantics> <msup> <mo>Π</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> . Article in Journal/Newspaper laptev Directory of Open Access Journals: DOAJ Articles Mathematics 7 10 901
spellingShingle differentiable manifold
cartan–laptev method
space of centered planes
normalization
reduction
connection
Mathematics
QA1-939
Olga Belova
Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_full Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_fullStr Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_full_unstemmed Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_short Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_sort reduction of bundles, connection, curvature, and torsion of the centered planes space at normalization
topic differentiable manifold
cartan–laptev method
space of centered planes
normalization
reduction
connection
Mathematics
QA1-939
topic_facet differentiable manifold
cartan–laptev method
space of centered planes
normalization
reduction
connection
Mathematics
QA1-939
url https://doi.org/10.3390/math7100901
https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70