Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization

The space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> of centered m -planes is considered in projective space <math display="inline"> <semantics> <msub> <mi>P</mi> <mi>n</mi> <...

Full description

Bibliographic Details
Published in:Mathematics
Main Author: Olga Belova
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2019
Subjects:
Online Access:https://doi.org/10.3390/math7100901
https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70
id ftdoajarticles:oai:doaj.org/article:56adf3c717cb45c1ab3b80c881255b70
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:56adf3c717cb45c1ab3b80c881255b70 2023-05-15T17:07:15+02:00 Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization Olga Belova 2019-09-01T00:00:00Z https://doi.org/10.3390/math7100901 https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70 EN eng MDPI AG https://www.mdpi.com/2227-7390/7/10/901 https://doaj.org/toc/2227-7390 2227-7390 doi:10.3390/math7100901 https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70 Mathematics, Vol 7, Iss 10, p 901 (2019) differentiable manifold cartan–laptev method space of centered planes normalization reduction connection Mathematics QA1-939 article 2019 ftdoajarticles https://doi.org/10.3390/math7100901 2022-12-31T15:05:11Z The space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> of centered m -planes is considered in projective space <math display="inline"> <semantics> <msub> <mi>P</mi> <mi>n</mi> </msub> </semantics> </math> . A principal bundle is associated with the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> and a group connection is given on the principal bundle. The connection is not uniquely induced at the normalization of the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> . Semi-normalized spaces <math display="inline"> <semantics> <msup> <mo>Π</mo> <mn>1</mn> </msup> </semantics> </math> , <math display="inline"> <semantics> <msup> <mo>Π</mo> <mn>2</mn> </msup> </semantics> </math> and normalized space <math display="inline"> <semantics> <msup> <mo>Π</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> are investigated. By virtue of the Cartan−Laptev method, the dynamics of changes of corresponding bundles, group connection objects, curvature and torsion of the connections are discovered at a transition from the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> to the normalized space <math display="inline"> <semantics> <msup> <mo>Π</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> . Article in Journal/Newspaper laptev Directory of Open Access Journals: DOAJ Articles Mathematics 7 10 901
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic differentiable manifold
cartan–laptev method
space of centered planes
normalization
reduction
connection
Mathematics
QA1-939
spellingShingle differentiable manifold
cartan–laptev method
space of centered planes
normalization
reduction
connection
Mathematics
QA1-939
Olga Belova
Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
topic_facet differentiable manifold
cartan–laptev method
space of centered planes
normalization
reduction
connection
Mathematics
QA1-939
description The space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> of centered m -planes is considered in projective space <math display="inline"> <semantics> <msub> <mi>P</mi> <mi>n</mi> </msub> </semantics> </math> . A principal bundle is associated with the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> and a group connection is given on the principal bundle. The connection is not uniquely induced at the normalization of the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> . Semi-normalized spaces <math display="inline"> <semantics> <msup> <mo>Π</mo> <mn>1</mn> </msup> </semantics> </math> , <math display="inline"> <semantics> <msup> <mo>Π</mo> <mn>2</mn> </msup> </semantics> </math> and normalized space <math display="inline"> <semantics> <msup> <mo>Π</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> are investigated. By virtue of the Cartan−Laptev method, the dynamics of changes of corresponding bundles, group connection objects, curvature and torsion of the connections are discovered at a transition from the space <math display="inline"> <semantics> <mo>Π</mo> </semantics> </math> to the normalized space <math display="inline"> <semantics> <msup> <mo>Π</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> .
format Article in Journal/Newspaper
author Olga Belova
author_facet Olga Belova
author_sort Olga Belova
title Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_short Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_full Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_fullStr Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_full_unstemmed Reduction of Bundles, Connection, Curvature, and Torsion of the Centered Planes Space at Normalization
title_sort reduction of bundles, connection, curvature, and torsion of the centered planes space at normalization
publisher MDPI AG
publishDate 2019
url https://doi.org/10.3390/math7100901
https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70
genre laptev
genre_facet laptev
op_source Mathematics, Vol 7, Iss 10, p 901 (2019)
op_relation https://www.mdpi.com/2227-7390/7/10/901
https://doaj.org/toc/2227-7390
2227-7390
doi:10.3390/math7100901
https://doaj.org/article/56adf3c717cb45c1ab3b80c881255b70
op_doi https://doi.org/10.3390/math7100901
container_title Mathematics
container_volume 7
container_issue 10
container_start_page 901
_version_ 1766062604619350016