Trypanosoma cruzi transmission dynamics in a synanthropic and domesticated host community.
Trypanosoma cruzi is the causative agent of Chagas disease, a Neglected Tropical Disease affecting 8 million people in the Americas. Triatomine hematophagous vectors feed on a high diversity of vertebrate species that can be reservoirs or dead-end hosts, such as avian species refractory to T. cruzi....
Published in: | PLOS Neglected Tropical Diseases |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019
|
Subjects: | |
Online Access: | https://doi.org/10.1371/journal.pntd.0007902 https://doaj.org/article/518e112e9a4443aaa3250622c404fac8 |
Summary: | Trypanosoma cruzi is the causative agent of Chagas disease, a Neglected Tropical Disease affecting 8 million people in the Americas. Triatomine hematophagous vectors feed on a high diversity of vertebrate species that can be reservoirs or dead-end hosts, such as avian species refractory to T. cruzi. To understand its transmission dynamics in synanthropic and domesticated species living within villages is essential to quantify disease risk and assess the potential of zooprophylaxis. We developed a SI model of T. cruzi transmission in a multi-host community where vector reproduction and parasite transmission depend on a triatomine blood-feeding rate accounting for vector host preferences and interference while feeding. The model was parameterized to describe T. cruzi transmission in villages of the Yucatan peninsula, Mexico, using the information about Triatoma dimidiata vectors and host populations accumulated over the past 15 years. Extensive analyses of the model showed that dogs are key reservoirs and contributors to human infection, as compared to synanthropic rodents and cats, while chickens or other domesticated avian hosts dilute T. cruzi transmission despite increasing vector abundance. In this context, reducing the number of dogs or increasing avian hosts abundance decreases incidence in humans by up to 56% and 39%, respectively, while combining such changes reduces incidence by 71%. Although such effects are only reached over >10-years periods, they represent important considerations to be included in the design of cost-effective Integrated Vector Management. The concomitant reduction in T. cruzi vector prevalence estimated by simulating these zooprophylactic interventions could indeed complement the removal of colonies from the peridomiciles or the use of insect screens that lower vector indoor abundance by ~60% and ~80%. These new findings reinforce the idea that education and community empowerment to reduce basic risk factors is a cornerstone to reach and sustain the key objective of interrupting ... |
---|