Ultrastructure of photo-sensory cells and pigment epithelium in the retina of the Antarctic fish Notothenia neglecta Nybelin (Nototheniidae)

The Antarctic nototheniid Notothenia neglecta is the dominant fish in its habitat in Admiralty Bay, King George Island. They are predators, often ambush feeders, with accurate visual behaviour. For that reason, the ultrastructure of retinal photoreceptive cells and the pigment epithelium was analyse...

Full description

Bibliographic Details
Main Authors: Lucelia Donatti, Edith Fanta
Format: Article in Journal/Newspaper
Language:English
Japanese
Published: National Institute of Polar Research 2002
Subjects:
Online Access:https://doi.org/10.15094/00009175
https://doaj.org/article/5179e1d437ab479aaec215071961d2d7
Description
Summary:The Antarctic nototheniid Notothenia neglecta is the dominant fish in its habitat in Admiralty Bay, King George Island. They are predators, often ambush feeders, with accurate visual behaviour. For that reason, the ultrastructure of retinal photoreceptive cells and the pigment epithelium was analysed through electron microscopy. Their retina has a pigment epithelium, five different photoreceptors : rods, short single, long single, double, and triple cones, and neurones and support cells. The pigment epithelium is characterised by infoldings of the basal membrane, basal mitochondria, smooth reticule, large amount of microtubules, melanin granules, phagosomes and detached membranes of photoreceptors. Cones show bimembranous discs in the outer segment, an accessory outer segment, a connecting cilium, calycal processes, microtubules in the inferior ellipsoid and myoid, centrioles in the ellipsoid, interdigitating myoid fins and apical microvilli of Muller cells in the myoid and elliposid region. All these features allow all sorts of adaptations to the environmental photic variations, and situate N. neglecta among fish with a complex retina, with cells that are arranged in ten layers, allowing horizontal and vertical integration among them. This allows optimal visual behaviour and perception of food and environment in every Antarctic season.