Snow spikes (penitentes) in the dry Andes, but not on Europa: a defense of Lliboutry's classic paper
Tall, spiky snow structures (penitentes) occur high in subtropical mountains, in the form of blades oriented east-west and tilted toward the noontime sun. By trapping sunlight, they cause a reduction of albedo by ~0.3 relative to flat snow. The formation of penitentes, explained by Lliboutry in 1954...
Published in: | Annals of Glaciology |
---|---|
Main Author: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press
2022
|
Subjects: | |
Online Access: | https://doi.org/10.1017/aog.2023.12 https://doaj.org/article/4ef551591fa04a639e66579cc2616a3f |
Summary: | Tall, spiky snow structures (penitentes) occur high in subtropical mountains, in the form of blades oriented east-west and tilted toward the noontime sun. By trapping sunlight, they cause a reduction of albedo by ~0.3 relative to flat snow. The formation of penitentes, explained by Lliboutry in 1954, requires weather conditions allowing the troughs to deepen rapidly by melting while the peaks remain dry and cold by sublimation, losing little mass, because of the 8.5-fold difference in latent heats. Lliboutry's explanation has been misrepresented in some recent publications. A concern has been raised that in the low latitudes of Jupiter's moon Europa, the ice surface may have developed penitentes, which would pose a hazard to a lander. They would require a different mechanism of formation, because Europa is too cold for melting to occur. If penitentes are present on Europa, they cannot be resolved by the coarse-resolution satellite images available now, but the high albedo of Europa (~0.7 at visible wavelengths) argues against the existence of such extreme roughness. |
---|