Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations
As a contribution to an EU project which dealt with the effects of climate change, air pollution impacts and ecosystems, two different atmospheric chemical transport models were used to simulate the depositions of acidifying and eutrophying pollutants over Europe for the period 1900–2050. Given the...
Published in: | Tellus B: Chemical and Physical Meteorology |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Stockholm University Press
2017
|
Subjects: | |
Online Access: | https://doi.org/10.1080/16000889.2017.1328945 https://doaj.org/article/4d61ae1ed41d4e7a8bcab2da0603c10f |
id |
ftdoajarticles:oai:doaj.org/article:4d61ae1ed41d4e7a8bcab2da0603c10f |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:4d61ae1ed41d4e7a8bcab2da0603c10f 2023-05-15T16:39:25+02:00 Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations Magnuz Engardt David Simpson Margit Schwikowski Lennart Granat 2017-01-01T00:00:00Z https://doi.org/10.1080/16000889.2017.1328945 https://doaj.org/article/4d61ae1ed41d4e7a8bcab2da0603c10f EN eng Stockholm University Press http://dx.doi.org/10.1080/16000889.2017.1328945 https://doaj.org/toc/1600-0889 1600-0889 doi:10.1080/16000889.2017.1328945 https://doaj.org/article/4d61ae1ed41d4e7a8bcab2da0603c10f Tellus: Series B, Chemical and Physical Meteorology, Vol 69, Iss 1 (2017) EACN ECLAIRE EMEP European Air Chemistry Network MATCH Meteorology. Climatology QC851-999 article 2017 ftdoajarticles https://doi.org/10.1080/16000889.2017.1328945 2022-12-30T21:45:19Z As a contribution to an EU project which dealt with the effects of climate change, air pollution impacts and ecosystems, two different atmospheric chemical transport models were used to simulate the depositions of acidifying and eutrophying pollutants over Europe for the period 1900–2050. Given the unavoidable uncertainties in the historical inputs to these simulations (emissions, meteorology), we generated a new and unique data-set for the purposes of model evaluation; comprising data from the European Air Chemistry Network (EACN) in operation from 1955 to early 1980s and more recent data from the EMEP monitoring network. The two models showed similar and reasonable skills in reproducing both the EACN and EMEP observational data although the MATCH model consistently simulates higher concentrations and depositions than the EMEP model. To further assess the models’ ability to reproduce the long-term trend in sulphur and nitrogen deposition we compared modelled concentrations of major ions in precipitation with data extracted from a glacier in the European Alps. While, the shape and timing of the nss-sulphate data agrees reasonably, the ice core data indicate persistently high nitrogen concentrations of oxidised and reduced nitrogen after the 1980s which does not correspond to the model simulations or data from Western Europe in the EMEP monitoring network. This study concludes that nss-sulphate deposition to Europe was already clearly elevated in the year 1900, but has now (mid-2010s) decreased to about 70% of what it was at the beginning of the last century. The deposition of oxidised nitrogen to Europe peaked during the 1980s but has since decreased to half of its maximum value; still it is 3–4 times higher than in the year 1900. The annual deposition of reduced nitrogen to Europe is currently more than two times as high as the conditions in the year 1900. Article in Journal/Newspaper ice core Directory of Open Access Journals: DOAJ Articles Tellus B: Chemical and Physical Meteorology 69 1 1328945 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
EACN ECLAIRE EMEP European Air Chemistry Network MATCH Meteorology. Climatology QC851-999 |
spellingShingle |
EACN ECLAIRE EMEP European Air Chemistry Network MATCH Meteorology. Climatology QC851-999 Magnuz Engardt David Simpson Margit Schwikowski Lennart Granat Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations |
topic_facet |
EACN ECLAIRE EMEP European Air Chemistry Network MATCH Meteorology. Climatology QC851-999 |
description |
As a contribution to an EU project which dealt with the effects of climate change, air pollution impacts and ecosystems, two different atmospheric chemical transport models were used to simulate the depositions of acidifying and eutrophying pollutants over Europe for the period 1900–2050. Given the unavoidable uncertainties in the historical inputs to these simulations (emissions, meteorology), we generated a new and unique data-set for the purposes of model evaluation; comprising data from the European Air Chemistry Network (EACN) in operation from 1955 to early 1980s and more recent data from the EMEP monitoring network. The two models showed similar and reasonable skills in reproducing both the EACN and EMEP observational data although the MATCH model consistently simulates higher concentrations and depositions than the EMEP model. To further assess the models’ ability to reproduce the long-term trend in sulphur and nitrogen deposition we compared modelled concentrations of major ions in precipitation with data extracted from a glacier in the European Alps. While, the shape and timing of the nss-sulphate data agrees reasonably, the ice core data indicate persistently high nitrogen concentrations of oxidised and reduced nitrogen after the 1980s which does not correspond to the model simulations or data from Western Europe in the EMEP monitoring network. This study concludes that nss-sulphate deposition to Europe was already clearly elevated in the year 1900, but has now (mid-2010s) decreased to about 70% of what it was at the beginning of the last century. The deposition of oxidised nitrogen to Europe peaked during the 1980s but has since decreased to half of its maximum value; still it is 3–4 times higher than in the year 1900. The annual deposition of reduced nitrogen to Europe is currently more than two times as high as the conditions in the year 1900. |
format |
Article in Journal/Newspaper |
author |
Magnuz Engardt David Simpson Margit Schwikowski Lennart Granat |
author_facet |
Magnuz Engardt David Simpson Margit Schwikowski Lennart Granat |
author_sort |
Magnuz Engardt |
title |
Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations |
title_short |
Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations |
title_full |
Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations |
title_fullStr |
Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations |
title_full_unstemmed |
Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations |
title_sort |
deposition of sulphur and nitrogen in europe 1900–2050. model calculations and comparison to historical observations |
publisher |
Stockholm University Press |
publishDate |
2017 |
url |
https://doi.org/10.1080/16000889.2017.1328945 https://doaj.org/article/4d61ae1ed41d4e7a8bcab2da0603c10f |
genre |
ice core |
genre_facet |
ice core |
op_source |
Tellus: Series B, Chemical and Physical Meteorology, Vol 69, Iss 1 (2017) |
op_relation |
http://dx.doi.org/10.1080/16000889.2017.1328945 https://doaj.org/toc/1600-0889 1600-0889 doi:10.1080/16000889.2017.1328945 https://doaj.org/article/4d61ae1ed41d4e7a8bcab2da0603c10f |
op_doi |
https://doi.org/10.1080/16000889.2017.1328945 |
container_title |
Tellus B: Chemical and Physical Meteorology |
container_volume |
69 |
container_issue |
1 |
container_start_page |
1328945 |
_version_ |
1766029765919113216 |