Changes in Viability and Taste Compounds of Crassostrea gigas during Depuration and Waterless Live Storage

To explore the changes in the viability and taste compounds of Crassostrea gigas at different circulation stages after harvesting, the oysters were sampled at different times of depuration, induced dormancy and waterless live storage for evaluation of viability changes in terms of adenosine triphosp...

Full description

Bibliographic Details
Main Author: LIN Hengzong, GAO Jialong, LIANG Zhiyuan, QIN Xiaoming, FAN Xiuping, LIN Haisheng, CAO Wenhong, HUANG Yanping
Format: Article in Journal/Newspaper
Language:English
Chinese
Published: China Food Publishing Company 2023
Subjects:
Online Access:https://doi.org/10.7506/spkx1002-6630-20211231-366
https://doaj.org/article/4915d63184934387ae05e66a003a9a01
Description
Summary:To explore the changes in the viability and taste compounds of Crassostrea gigas at different circulation stages after harvesting, the oysters were sampled at different times of depuration, induced dormancy and waterless live storage for evaluation of viability changes in terms of adenosine triphosphate (ATP) related compounds, adenylate energy charge (AEC) and free amino acids and evaluation of flavor quality changes with respect to contents and taste activity values (TAV) of taste compounds. The results showed that the viability and taste compounds of C. gigas were significantly influenced by postharvest transportation and environmental stress. All viability indicators were significantly restored by 24 h depuration, with ATP, AEC and the content of total free amino acids being significantly higher than before depuration (P < 0.05), indicating that the viability reached new levels. During the process from induced dormancy to waterless live storage, more energy substances were required to maintain the balance of the organism under low temperature and hypoxia stress, so all viability indicators were significantly lower than before depuration (P < 0.05) and remained stable at a lower level. Among the taste compounds, the content of umami amino acids increased and the content of bitter amino acids decreased in C. gigas after depuration, and the content of taste amino acids decreased slowly as the waterless live storage time increased. The umami?nucleotides inosine 5’-monphosphate (IMP) and adenosine 5’-monophosphate (AMP) were accumulated throughout the circulation process (P < 0.05); the total amount of organic acids showed a fluctuant downward trend, with the amount of lactic acid being significantly higher after than before depuration (P < 0.05) and showing a decreasing trend from dormancy to the end of waterless live storage (P < 0.05), while the amounts of succinic acid and malic acid showed an increasing trend during waterless live storage (P < 0.05). The levels of Na+ and K+, which play an ...