Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenoty...

Full description

Bibliographic Details
Published in:PLoS ONE
Main Authors: Yingjie Yu, Xuejiao Yang, Huaying Wang, Fengxue Shi, Ying Liu, Jushan Liu, Linfeng Li, Deli Wang, Bao Liu
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2013
Subjects:
R
Q
DML
Online Access:https://doi.org/10.1371/journal.pone.0055772
https://doaj.org/article/478f9403dd3b43d7b40472556a3986f4
id ftdoajarticles:oai:doaj.org/article:478f9403dd3b43d7b40472556a3986f4
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:478f9403dd3b43d7b40472556a3986f4 2023-05-15T16:01:47+02:00 Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses. Yingjie Yu Xuejiao Yang Huaying Wang Fengxue Shi Ying Liu Jushan Liu Linfeng Li Deli Wang Bao Liu 2013-01-01T00:00:00Z https://doi.org/10.1371/journal.pone.0055772 https://doaj.org/article/478f9403dd3b43d7b40472556a3986f4 EN eng Public Library of Science (PLoS) http://europepmc.org/articles/PMC3572093?pdf=render https://doaj.org/toc/1932-6203 1932-6203 doi:10.1371/journal.pone.0055772 https://doaj.org/article/478f9403dd3b43d7b40472556a3986f4 PLoS ONE, Vol 8, Iss 2, p e55772 (2013) Medicine R Science Q article 2013 ftdoajarticles https://doi.org/10.1371/journal.pone.0055772 2022-12-31T13:32:49Z BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by the affected plant populations to the changed ... Article in Journal/Newspaper DML Directory of Open Access Journals: DOAJ Articles PLoS ONE 8 2 e55772
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yingjie Yu
Xuejiao Yang
Huaying Wang
Fengxue Shi
Ying Liu
Jushan Liu
Linfeng Li
Deli Wang
Bao Liu
Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.
topic_facet Medicine
R
Science
Q
description BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by the affected plant populations to the changed ...
format Article in Journal/Newspaper
author Yingjie Yu
Xuejiao Yang
Huaying Wang
Fengxue Shi
Ying Liu
Jushan Liu
Linfeng Li
Deli Wang
Bao Liu
author_facet Yingjie Yu
Xuejiao Yang
Huaying Wang
Fengxue Shi
Ying Liu
Jushan Liu
Linfeng Li
Deli Wang
Bao Liu
author_sort Yingjie Yu
title Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.
title_short Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.
title_full Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.
title_fullStr Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.
title_full_unstemmed Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.
title_sort cytosine methylation alteration in natural populations of leymus chinensis induced by multiple abiotic stresses.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doi.org/10.1371/journal.pone.0055772
https://doaj.org/article/478f9403dd3b43d7b40472556a3986f4
genre DML
genre_facet DML
op_source PLoS ONE, Vol 8, Iss 2, p e55772 (2013)
op_relation http://europepmc.org/articles/PMC3572093?pdf=render
https://doaj.org/toc/1932-6203
1932-6203
doi:10.1371/journal.pone.0055772
https://doaj.org/article/478f9403dd3b43d7b40472556a3986f4
op_doi https://doi.org/10.1371/journal.pone.0055772
container_title PLoS ONE
container_volume 8
container_issue 2
container_start_page e55772
_version_ 1766397512456863744