Detection and Delineation of Sorted Stone Circles in Antarctica
Sorted stone circles are natural surface patterns formed in periglacial environments. Their relation to permafrost conditions make them very helpful for better understanding the past climates where they were formed and have evolved and also for monitoring current underlying processes in case circles...
Published in: | Remote Sensing |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
MDPI AG
2020
|
Subjects: | |
Online Access: | https://doi.org/10.3390/rs12010160 https://doaj.org/article/438c9cab72da4ca69014f1dbe6018d7b |
Summary: | Sorted stone circles are natural surface patterns formed in periglacial environments. Their relation to permafrost conditions make them very helpful for better understanding the past climates where they were formed and have evolved and also for monitoring current underlying processes in case circles are active. These metric scale patterns that occur in clusters of tens to thousands of circular elements, can be more comprehensively characterized if automated methods are used. This paper addresses their identification and delineation through the development and testing of a set of automated approaches, namely, template matching, sliding band filter, and dynamic programming. All of these methods take advantage of the 3D shape of the structures conveyed by digital elevation models (DEM), built from ultra-high resolution imagery captured by unmanned aerial vehicles (UAV) surveys developed in Barton Peninsula, King George Island, Antarctica (62°S). The best detection results achieve scores above 85%, while the delineations are performed with errors as low as 7%. |
---|