Simulation and Domain Identification of Sea Ice Thermodynamic System

Based on the measured data and characteristics of sea ice temperature distribution in space and time, this study is intended to consider a parabolic partial differential equation of the thermodynamic field of sea ice (coupled by snow, ice, and sea water layers) with a time-dependent domain and its p...

Full description

Bibliographic Details
Published in:Journal of Applied Mathematics
Main Authors: Bing Tan, Peng Lu, Zhijun Li, Enmin Feng, Juan Wang
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2012
Subjects:
Online Access:https://doi.org/10.1155/2012/532870
https://doaj.org/article/40ff527d6b4b49cf9501a013504e1388
Description
Summary:Based on the measured data and characteristics of sea ice temperature distribution in space and time, this study is intended to consider a parabolic partial differential equation of the thermodynamic field of sea ice (coupled by snow, ice, and sea water layers) with a time-dependent domain and its parameter identification problem. An optimal model with state constraints is presented with the thicknesses of snow and sea ice as parametric variables and the deviation between the calculated and measured sea ice temperatures as the performance criterion. The unique existence of the weak solution of the thermodynamic system is proved. The properties of the identification problem and the existence of the optimal parameter are discussed, and the one-order necessary condition is derived. Finally, based on the nonoverlapping domain decomposition method and semi-implicit difference scheme, an optimization algorithm is proposed for the numerical simulation. Results show that the simulated temperature of sea ice fit well with the measured data, and the better fit is corresponding to the deeper sea ice.