Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance
Type III antifreeze proteins (AFPIIIs) are a group of small globular proteins found in some polar fishes to protect them against freezing damage. Transgenic expression of AFPs has been shown to confer cold tolerance to commercially important plants and animals. We have previously isolated multiple A...
Published in: | Aquaculture and Fisheries |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
KeAi Communications Co., Ltd.
2021
|
Subjects: | |
Online Access: | https://doi.org/10.1016/j.aaf.2019.11.006 https://doaj.org/article/4016f4a514f94f53accc2b632b975933 |
id |
ftdoajarticles:oai:doaj.org/article:4016f4a514f94f53accc2b632b975933 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:4016f4a514f94f53accc2b632b975933 2024-09-15T17:48:15+00:00 Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance Qiao Huang Ruiqin Hu Hui zhu Changlian Peng Liangbiao Chen 2021-03-01T00:00:00Z https://doi.org/10.1016/j.aaf.2019.11.006 https://doaj.org/article/4016f4a514f94f53accc2b632b975933 EN eng KeAi Communications Co., Ltd. http://www.sciencedirect.com/science/article/pii/S2468550X19302084 https://doaj.org/toc/2468-550X 2468-550X doi:10.1016/j.aaf.2019.11.006 https://doaj.org/article/4016f4a514f94f53accc2b632b975933 Aquaculture and Fisheries, Vol 6, Iss 2, Pp 186-191 (2021) Type III antifreeze proteins Multidomain proteins Cold tolerance Electrolyte leakage MDA Proline Aquaculture. Fisheries. Angling SH1-691 article 2021 ftdoajarticles https://doi.org/10.1016/j.aaf.2019.11.006 2024-08-05T17:49:30Z Type III antifreeze proteins (AFPIIIs) are a group of small globular proteins found in some polar fishes to protect them against freezing damage. Transgenic expression of AFPs has been shown to confer cold tolerance to commercially important plants and animals. We have previously isolated multiple AFPIII genes in the Antarctic eelpout (Lycodichthys dearborni) that encode larger AFPIII isoforms with up to 12 of the conventional domains. Here we have introduced the fish AFPIII genes that encode for the monomer (ld1), dimer (ld2), trimer (ld3) and tetramer (ld4) AFPIII isoforms in tobacco plants. Pot-grown 4-week-old transgenic tobacco plants were exposed to cold stress at 4 °C for 30 days and the results show that ld1, ld2, ld3 and ld4 transgenic plants present relatively lower electrolyte leakage and lower content of malondialdehyde (MDA), but accumulated higher content of proline when compared to control plants. This indicates considerable improved membrane integrity under low temperature stress and improvement of the plant cold resistance. The plants transformed with the AFPIII tetramer- and trimer-domains demonstrated a higher cold-tolerant levels when compared with plants transformed with the dimer- and monomer AFPIII domains. Our study further supports that fish AFPIIIs, especially the multidomain proteins, protect cells from non-freezing hypothermic stresses, apart from there well-known function as ice inhibitors molecules at freezing temperature. Article in Journal/Newspaper Antarc* Antarctic Directory of Open Access Journals: DOAJ Articles Aquaculture and Fisheries 6 2 186 191 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Type III antifreeze proteins Multidomain proteins Cold tolerance Electrolyte leakage MDA Proline Aquaculture. Fisheries. Angling SH1-691 |
spellingShingle |
Type III antifreeze proteins Multidomain proteins Cold tolerance Electrolyte leakage MDA Proline Aquaculture. Fisheries. Angling SH1-691 Qiao Huang Ruiqin Hu Hui zhu Changlian Peng Liangbiao Chen Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance |
topic_facet |
Type III antifreeze proteins Multidomain proteins Cold tolerance Electrolyte leakage MDA Proline Aquaculture. Fisheries. Angling SH1-691 |
description |
Type III antifreeze proteins (AFPIIIs) are a group of small globular proteins found in some polar fishes to protect them against freezing damage. Transgenic expression of AFPs has been shown to confer cold tolerance to commercially important plants and animals. We have previously isolated multiple AFPIII genes in the Antarctic eelpout (Lycodichthys dearborni) that encode larger AFPIII isoforms with up to 12 of the conventional domains. Here we have introduced the fish AFPIII genes that encode for the monomer (ld1), dimer (ld2), trimer (ld3) and tetramer (ld4) AFPIII isoforms in tobacco plants. Pot-grown 4-week-old transgenic tobacco plants were exposed to cold stress at 4 °C for 30 days and the results show that ld1, ld2, ld3 and ld4 transgenic plants present relatively lower electrolyte leakage and lower content of malondialdehyde (MDA), but accumulated higher content of proline when compared to control plants. This indicates considerable improved membrane integrity under low temperature stress and improvement of the plant cold resistance. The plants transformed with the AFPIII tetramer- and trimer-domains demonstrated a higher cold-tolerant levels when compared with plants transformed with the dimer- and monomer AFPIII domains. Our study further supports that fish AFPIIIs, especially the multidomain proteins, protect cells from non-freezing hypothermic stresses, apart from there well-known function as ice inhibitors molecules at freezing temperature. |
format |
Article in Journal/Newspaper |
author |
Qiao Huang Ruiqin Hu Hui zhu Changlian Peng Liangbiao Chen |
author_facet |
Qiao Huang Ruiqin Hu Hui zhu Changlian Peng Liangbiao Chen |
author_sort |
Qiao Huang |
title |
Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance |
title_short |
Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance |
title_full |
Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance |
title_fullStr |
Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance |
title_full_unstemmed |
Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance |
title_sort |
expression of multi-domain type iii antifreeze proteins from the antarctic eelpout (lycodichths dearborni) in transgenic tobacco plants improves cold resistance |
publisher |
KeAi Communications Co., Ltd. |
publishDate |
2021 |
url |
https://doi.org/10.1016/j.aaf.2019.11.006 https://doaj.org/article/4016f4a514f94f53accc2b632b975933 |
genre |
Antarc* Antarctic |
genre_facet |
Antarc* Antarctic |
op_source |
Aquaculture and Fisheries, Vol 6, Iss 2, Pp 186-191 (2021) |
op_relation |
http://www.sciencedirect.com/science/article/pii/S2468550X19302084 https://doaj.org/toc/2468-550X 2468-550X doi:10.1016/j.aaf.2019.11.006 https://doaj.org/article/4016f4a514f94f53accc2b632b975933 |
op_doi |
https://doi.org/10.1016/j.aaf.2019.11.006 |
container_title |
Aquaculture and Fisheries |
container_volume |
6 |
container_issue |
2 |
container_start_page |
186 |
op_container_end_page |
191 |
_version_ |
1810289405454188544 |