The South Shetland Islands, Antarctica: Lithostratigraphy and geological map

Over the last few decades, numerous geological studies have been carried out in the South Shetland Islands, which have greatly contributed to a better understanding of its geological evolution. However, few attempts have been conducted to correlate the geological units throughout this archipelago. W...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Joaquín Bastías, David Chew, Camila Villanueva, Teal Riley, Joseline Manfroi, Cristine Trevisan, Marcelo Leppe, Paula Castillo, Fernando Poblete, Dieter Tetzner, Gregory Giuliani, Bastián López, Hong Chen, Guang-Gao Zheng, Yue Zhao, Liang Gao, Anna Rauch, Ricardo Jaña
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2023
Subjects:
Q
Online Access:https://doi.org/10.3389/feart.2022.1002760
https://doaj.org/article/3e36752815a24947b41de22210921442
Description
Summary:Over the last few decades, numerous geological studies have been carried out in the South Shetland Islands, which have greatly contributed to a better understanding of its geological evolution. However, few attempts have been conducted to correlate the geological units throughout this archipelago. We present herein a review of the literature available in the South Shetland Islands, which we use to propose a lithostratigraphical correlation that constitutes a coherent stratigraphy for the main Mesozoic and Cenozoic rocks of the South Shetland Islands along with a new geological map. The lithostratigraphical correlation shows that the geological and environmental evolution comprises three main stages: 1) deep marine sedimentation from ∼164 to 140 Ma, 2) subaerial volcanism and sedimentation with a proliferation of plants and fauna from ∼140 to 35 Ma and 3) glacial and interglacial deposits from ∼35 Ma. The lithostratigraphical correlation also shows a broad geographical trend of decreasing age of volcanism from southwest to northeast, which has been previously suggested. However, this spatial age trend is disrupted by the presence of Eocene magmatism in Livingston Island, located in the centre of the archipelago. We suggest that the migration of volcanism occurred from the Late Cretaceous until the early Eocene. Subsequently, enhanced magmatic activity took place from the mid-Eocene until the Miocene, which we associate with processes related with the waning of subduction. Constraining the protolith age of the metamorphic complex of Smith Island remains challenging, yet holds key implications for the tectonic and accretionary evolution of the Antarctic Peninsula. The rocks recording the glaciation of this sector of Antarctica are well exposed in the northern South Shetland Islands and hold critical information for understanding the timings and processes that lead to the greenhouse to icehouse transition at the end of the Eocene. Finally, contemporaneous rocks to the breakup of Antarctic Peninsula from Patagonia ...