Identifying clusters of precipitation for the Brazilian Legal Amazon based on magnitude of trends and its correlation with sea surface temperature

Abstract Prioritizing watershed management interventions relies on delineating homogeneous precipitation regions. In this study, we identify these regions in the Brazilian Legal Amazon based on the magnitude of Sen’s Slope trends using annual precipitation data from September to August, employing th...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Rodrigo Martins Moreira, Bruno César dos Santos, Trent Biggs, Fernando de Sales, Stefan Sieber
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2024
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-024-63583-x
https://doaj.org/article/37afe59781f44c40ad9aa0fb3bb89c18
Description
Summary:Abstract Prioritizing watershed management interventions relies on delineating homogeneous precipitation regions. In this study, we identify these regions in the Brazilian Legal Amazon based on the magnitude of Sen’s Slope trends using annual precipitation data from September to August, employing the Google Earth Engine platform. Utilizing the silhouette method, we determine four distinct clusters representing zones of homogeneous precipitation patterns. Cluster 0 exhibits a significant median increase in precipitation of 3.20 mm year−1 over the period from 1981 to 2020. Cluster 1 shows a notable increase of 8.13 mm year−1, while Clusters 2 and 3 demonstrate reductions in precipitation of − 1.61 mm year−1 and − 3.87 mm year−1, respectively, all statistically significant. Notably, the region known as the arc of deforestation falls within Cluster 2, indicating a concerning trend of reduced precipitation. Additionally, our analysis reveals significant correlations between Sea Surface Temperature (SST) in various oceanic regions and precipitation patterns over the Brazilian Legal Amazon. Particularly noteworthy is the strong positive correlation with SST in the South Atlantic, while negative correlations are observed with SST in the South Pacific and North Atlantic. These findings provide valuable insights for enhancing climate adaptation strategies in the Brazilian Legal Amazon region.