Spatial epidemiology and adaptive targeted sampling to manage the Chagas disease vector Triatoma dimidiata.

Widespread application of insecticide remains the primary form of control for Chagas disease in Central America, despite only temporarily reducing domestic levels of the endemic vector Triatoma dimidiata and having little long-term impact. Recently, an approach emphasizing community feedback and hou...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: B K M Case, Jean-Gabriel Young, Daniel Penados, Carlota Monroy, Laurent Hébert-Dufresne, Lori Stevens
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2022
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0010436
https://doaj.org/article/375a39c117444e0fae284a57d8ca620e
Description
Summary:Widespread application of insecticide remains the primary form of control for Chagas disease in Central America, despite only temporarily reducing domestic levels of the endemic vector Triatoma dimidiata and having little long-term impact. Recently, an approach emphasizing community feedback and housing improvements has been shown to yield lasting results. However, the additional resources and personnel required by such an intervention likely hinders its widespread adoption. One solution to this problem would be to target only a subset of houses in a community while still eliminating enough infestations to interrupt disease transfer. Here we develop a sequential sampling framework that adapts to information specific to a community as more houses are visited, thereby allowing us to efficiently find homes with domiciliary vectors while minimizing sampling bias. The method fits Bayesian geostatistical models to make spatially informed predictions, while gradually transitioning from prioritizing houses based on prediction uncertainty to targeting houses with a high risk of infestation. A key feature of the method is the use of a single exploration parameter, α, to control the rate of transition between these two design targets. In a simulation study using empirical data from five villages in southeastern Guatemala, we test our method using a range of values for α, and find it can consistently select fewer homes than random sampling, while still bringing the village infestation rate below a given threshold. We further find that when additional socioeconomic information is available, much larger savings are possible, but that meeting the target infestation rate is less consistent, particularly among the less exploratory strategies. Our results suggest new options for implementing long-term T. dimidiata control.