Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO 2 Sequestration

Canada’s mineral reserves can play a very important role in curbing climate change if natural alkaline minerals are used for the process of mineral carbonation. In this work, the potential of using two Canadian natural silicates for accelerated carbonation is experimentally assessed: kimberlite mine...

Full description

Bibliographic Details
Published in:Crystals
Main Authors: Ye Eun Chai, Salma Chalouati, Hugo Fantucci, Rafael M. Santos
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2021
Subjects:
Online Access:https://doi.org/10.3390/cryst11121584
https://doaj.org/article/331dedc82024498297af2a0ef24ea3cc
id ftdoajarticles:oai:doaj.org/article:331dedc82024498297af2a0ef24ea3cc
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:331dedc82024498297af2a0ef24ea3cc 2023-05-15T17:46:47+02:00 Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO 2 Sequestration Ye Eun Chai Salma Chalouati Hugo Fantucci Rafael M. Santos 2021-12-01T00:00:00Z https://doi.org/10.3390/cryst11121584 https://doaj.org/article/331dedc82024498297af2a0ef24ea3cc EN eng MDPI AG https://www.mdpi.com/2073-4352/11/12/1584 https://doaj.org/toc/2073-4352 doi:10.3390/cryst11121584 2073-4352 https://doaj.org/article/331dedc82024498297af2a0ef24ea3cc Crystals, Vol 11, Iss 1584, p 1584 (2021) carbon sequestration CO 2 mineralization natural silicates mining residues solid carbonates Crystallography QD901-999 article 2021 ftdoajarticles https://doi.org/10.3390/cryst11121584 2022-12-30T21:10:28Z Canada’s mineral reserves can play a very important role in curbing climate change if natural alkaline minerals are used for the process of mineral carbonation. In this work, the potential of using two Canadian natural silicates for accelerated carbonation is experimentally assessed: kimberlite mine tailing (Mg 0.846 Al 0.165 Fe 0.147 Ca 0.067 SiO 3.381 ) from the Northwest Territories, and mined wollastonite ore (Ca 0.609 Mg 0.132 Al 0.091 Fe 0.024 SiO 2.914 ) from Ontario. The aim of this work was to evaluate the weathering reactivity and CO 2 uptake capacity via carbonation of these two comminuted rocks, both of which are made up of a mixture of alkaline minerals, under process conditions that spanned from milder to intensified. Research questions addressed include: does kimberlite contain a sufficient amount of reactive minerals to act as an effective carbon sink; is dehydroxylation necessary to activate kimberlite, and to what extent does it do this; do secondary phases of wollastonite hinder its reactivity; and can either of these minerals be carbonated without pH buffering, or only weathered? Incubator, slurry, and pressurized slurry methods of accelerated weathering and carbonation were used, and the effect of the process parameters (temperature, solid-to-liquid ration, reaction time, CO 2 level, pH buffer) on the CO 2 uptake and crystalline carbonates formation is tested. The reacted samples were analyzed by pH test, loss-on-ignition test, calcimeter test, and X-ray diffraction analysis. Results showed that wollastonite ore (rich in fast-weathering CaSiO 3 ) is more suitable for accelerated carbonation than kimberlite tailing (containing slow-weathering hydrated magnesium silicates and aluminosilicates) when only its capability to rapidly form solid carbonates is considered. Incubator and pressurized buffered slurry methods proved to be most effective as under these conditions the precipitation of carbonates was more favorable, while the unbuffered slurry reaction conditions were more akin to ... Article in Journal/Newspaper Northwest Territories Directory of Open Access Journals: DOAJ Articles Northwest Territories Crystals 11 12 1584
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic carbon sequestration
CO 2 mineralization
natural silicates
mining residues
solid carbonates
Crystallography
QD901-999
spellingShingle carbon sequestration
CO 2 mineralization
natural silicates
mining residues
solid carbonates
Crystallography
QD901-999
Ye Eun Chai
Salma Chalouati
Hugo Fantucci
Rafael M. Santos
Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO 2 Sequestration
topic_facet carbon sequestration
CO 2 mineralization
natural silicates
mining residues
solid carbonates
Crystallography
QD901-999
description Canada’s mineral reserves can play a very important role in curbing climate change if natural alkaline minerals are used for the process of mineral carbonation. In this work, the potential of using two Canadian natural silicates for accelerated carbonation is experimentally assessed: kimberlite mine tailing (Mg 0.846 Al 0.165 Fe 0.147 Ca 0.067 SiO 3.381 ) from the Northwest Territories, and mined wollastonite ore (Ca 0.609 Mg 0.132 Al 0.091 Fe 0.024 SiO 2.914 ) from Ontario. The aim of this work was to evaluate the weathering reactivity and CO 2 uptake capacity via carbonation of these two comminuted rocks, both of which are made up of a mixture of alkaline minerals, under process conditions that spanned from milder to intensified. Research questions addressed include: does kimberlite contain a sufficient amount of reactive minerals to act as an effective carbon sink; is dehydroxylation necessary to activate kimberlite, and to what extent does it do this; do secondary phases of wollastonite hinder its reactivity; and can either of these minerals be carbonated without pH buffering, or only weathered? Incubator, slurry, and pressurized slurry methods of accelerated weathering and carbonation were used, and the effect of the process parameters (temperature, solid-to-liquid ration, reaction time, CO 2 level, pH buffer) on the CO 2 uptake and crystalline carbonates formation is tested. The reacted samples were analyzed by pH test, loss-on-ignition test, calcimeter test, and X-ray diffraction analysis. Results showed that wollastonite ore (rich in fast-weathering CaSiO 3 ) is more suitable for accelerated carbonation than kimberlite tailing (containing slow-weathering hydrated magnesium silicates and aluminosilicates) when only its capability to rapidly form solid carbonates is considered. Incubator and pressurized buffered slurry methods proved to be most effective as under these conditions the precipitation of carbonates was more favorable, while the unbuffered slurry reaction conditions were more akin to ...
format Article in Journal/Newspaper
author Ye Eun Chai
Salma Chalouati
Hugo Fantucci
Rafael M. Santos
author_facet Ye Eun Chai
Salma Chalouati
Hugo Fantucci
Rafael M. Santos
author_sort Ye Eun Chai
title Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO 2 Sequestration
title_short Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO 2 Sequestration
title_full Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO 2 Sequestration
title_fullStr Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO 2 Sequestration
title_full_unstemmed Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO 2 Sequestration
title_sort accelerated weathering and carbonation (mild to intensified) of natural canadian silicates (kimberlite and wollastonite) for co 2 sequestration
publisher MDPI AG
publishDate 2021
url https://doi.org/10.3390/cryst11121584
https://doaj.org/article/331dedc82024498297af2a0ef24ea3cc
geographic Northwest Territories
geographic_facet Northwest Territories
genre Northwest Territories
genre_facet Northwest Territories
op_source Crystals, Vol 11, Iss 1584, p 1584 (2021)
op_relation https://www.mdpi.com/2073-4352/11/12/1584
https://doaj.org/toc/2073-4352
doi:10.3390/cryst11121584
2073-4352
https://doaj.org/article/331dedc82024498297af2a0ef24ea3cc
op_doi https://doi.org/10.3390/cryst11121584
container_title Crystals
container_volume 11
container_issue 12
container_start_page 1584
_version_ 1766150623250612224