Next‐generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death
Abstract Contrary to widespread assumptions, next‐generation high (annual to multiannual) and ultra‐high (subannual) resolution analyses of an Alpine glacier reveal that true historical minimum natural levels of lead in the atmosphere occurred only once in the last ~2000 years. During the Black Deat...
Published in: | GeoHealth |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Geophysical Union (AGU)
2017
|
Subjects: | |
Online Access: | https://doi.org/10.1002/2017GH000064 https://doaj.org/article/3246d3e48c7f4997956d71125d9b00d8 |
id |
ftdoajarticles:oai:doaj.org/article:3246d3e48c7f4997956d71125d9b00d8 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:3246d3e48c7f4997956d71125d9b00d8 2023-05-15T16:38:49+02:00 Next‐generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death Alexander F. More Nicole E. Spaulding Pascal Bohleber Michael J. Handley Helene Hoffmann Elena V. Korotkikh Andrei V. Kurbatov Christopher P. Loveluck Sharon B. Sneed Michael McCormick Paul A. Mayewski 2017-06-01T00:00:00Z https://doi.org/10.1002/2017GH000064 https://doaj.org/article/3246d3e48c7f4997956d71125d9b00d8 EN eng American Geophysical Union (AGU) https://doi.org/10.1002/2017GH000064 https://doaj.org/toc/2471-1403 2471-1403 doi:10.1002/2017GH000064 https://doaj.org/article/3246d3e48c7f4997956d71125d9b00d8 GeoHealth, Vol 1, Iss 4, Pp 211-219 (2017) ice core pandemic lead Black Death Colle Gnifetti Europe Environmental protection TD169-171.8 article 2017 ftdoajarticles https://doi.org/10.1002/2017GH000064 2022-12-31T10:17:18Z Abstract Contrary to widespread assumptions, next‐generation high (annual to multiannual) and ultra‐high (subannual) resolution analyses of an Alpine glacier reveal that true historical minimum natural levels of lead in the atmosphere occurred only once in the last ~2000 years. During the Black Death pandemic, demographic and economic collapse interrupted metal production and atmospheric lead dropped to undetectable levels. This finding challenges current government and industry understanding of preindustrial lead pollution and its potential implications for human health of children and adults worldwide. Available technology and geographic location have limited previous ice core investigations. We provide new high‐ (discrete, inductively coupled plasma mass spectrometry, ICP‐MS) and ultra‐high resolution (laser ablation inductively coupled plasma mass spectrometry, LA‐ICP‐MS) records of atmospheric lead deposition extracted from the high Alpine glacier Colle Gnifetti, in the Swiss‐Italian Alps. We show that contrary to the conventional wisdom, low levels at or approaching natural background occurred only in a single 4 year period in ~2000 years documented in the new ice core, during the Black Death (~1349–1353 C.E.), the most devastating pandemic in Eurasian history. Ultra‐high chronological resolution allows for the first time detailed and decisive comparison of the new glaciochemical data with historical records. Historical evidence shows that mining activity ceased upwind of the core site from ~1349 to 1353, while concurrently on the glacier lead (Pb) concentrations—dated by layer counting confirmed by radiocarbon dating—dropped to levels below detection, an order of magnitude beneath figures deemed low in earlier studies. Previous assumptions about preindustrial “natural” background lead levels in the atmosphere—and potential impacts on humans—have been misleading, with significant implications for current environmental, industrial, and public health policy, as well as for the history of human lead exposure. ... Article in Journal/Newspaper ice core Directory of Open Access Journals: DOAJ Articles GeoHealth 1 4 211 219 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
ice core pandemic lead Black Death Colle Gnifetti Europe Environmental protection TD169-171.8 |
spellingShingle |
ice core pandemic lead Black Death Colle Gnifetti Europe Environmental protection TD169-171.8 Alexander F. More Nicole E. Spaulding Pascal Bohleber Michael J. Handley Helene Hoffmann Elena V. Korotkikh Andrei V. Kurbatov Christopher P. Loveluck Sharon B. Sneed Michael McCormick Paul A. Mayewski Next‐generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death |
topic_facet |
ice core pandemic lead Black Death Colle Gnifetti Europe Environmental protection TD169-171.8 |
description |
Abstract Contrary to widespread assumptions, next‐generation high (annual to multiannual) and ultra‐high (subannual) resolution analyses of an Alpine glacier reveal that true historical minimum natural levels of lead in the atmosphere occurred only once in the last ~2000 years. During the Black Death pandemic, demographic and economic collapse interrupted metal production and atmospheric lead dropped to undetectable levels. This finding challenges current government and industry understanding of preindustrial lead pollution and its potential implications for human health of children and adults worldwide. Available technology and geographic location have limited previous ice core investigations. We provide new high‐ (discrete, inductively coupled plasma mass spectrometry, ICP‐MS) and ultra‐high resolution (laser ablation inductively coupled plasma mass spectrometry, LA‐ICP‐MS) records of atmospheric lead deposition extracted from the high Alpine glacier Colle Gnifetti, in the Swiss‐Italian Alps. We show that contrary to the conventional wisdom, low levels at or approaching natural background occurred only in a single 4 year period in ~2000 years documented in the new ice core, during the Black Death (~1349–1353 C.E.), the most devastating pandemic in Eurasian history. Ultra‐high chronological resolution allows for the first time detailed and decisive comparison of the new glaciochemical data with historical records. Historical evidence shows that mining activity ceased upwind of the core site from ~1349 to 1353, while concurrently on the glacier lead (Pb) concentrations—dated by layer counting confirmed by radiocarbon dating—dropped to levels below detection, an order of magnitude beneath figures deemed low in earlier studies. Previous assumptions about preindustrial “natural” background lead levels in the atmosphere—and potential impacts on humans—have been misleading, with significant implications for current environmental, industrial, and public health policy, as well as for the history of human lead exposure. ... |
format |
Article in Journal/Newspaper |
author |
Alexander F. More Nicole E. Spaulding Pascal Bohleber Michael J. Handley Helene Hoffmann Elena V. Korotkikh Andrei V. Kurbatov Christopher P. Loveluck Sharon B. Sneed Michael McCormick Paul A. Mayewski |
author_facet |
Alexander F. More Nicole E. Spaulding Pascal Bohleber Michael J. Handley Helene Hoffmann Elena V. Korotkikh Andrei V. Kurbatov Christopher P. Loveluck Sharon B. Sneed Michael McCormick Paul A. Mayewski |
author_sort |
Alexander F. More |
title |
Next‐generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death |
title_short |
Next‐generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death |
title_full |
Next‐generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death |
title_fullStr |
Next‐generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death |
title_full_unstemmed |
Next‐generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death |
title_sort |
next‐generation ice core technology reveals true minimum natural levels of lead (pb) in the atmosphere: insights from the black death |
publisher |
American Geophysical Union (AGU) |
publishDate |
2017 |
url |
https://doi.org/10.1002/2017GH000064 https://doaj.org/article/3246d3e48c7f4997956d71125d9b00d8 |
genre |
ice core |
genre_facet |
ice core |
op_source |
GeoHealth, Vol 1, Iss 4, Pp 211-219 (2017) |
op_relation |
https://doi.org/10.1002/2017GH000064 https://doaj.org/toc/2471-1403 2471-1403 doi:10.1002/2017GH000064 https://doaj.org/article/3246d3e48c7f4997956d71125d9b00d8 |
op_doi |
https://doi.org/10.1002/2017GH000064 |
container_title |
GeoHealth |
container_volume |
1 |
container_issue |
4 |
container_start_page |
211 |
op_container_end_page |
219 |
_version_ |
1766029151056166912 |