Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomog...

Full description

Bibliographic Details
Published in:Annals of Geophysics
Main Authors: T. Neubert, J. P. Thayer, G. S. Bust, J. Watermann, C. Coker
Format: Article in Journal/Newspaper
Language:English
Published: Istituto Nazionale di Geofisica e Vulcanologia (INGV) 2002
Subjects:
Online Access:https://doi.org/10.4401/ag-3488
https://doaj.org/article/302bf79718454f6fb8c3d05a5161b22c
id ftdoajarticles:oai:doaj.org/article:302bf79718454f6fb8c3d05a5161b22c
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:302bf79718454f6fb8c3d05a5161b22c 2023-05-15T16:28:20+02:00 Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations T. Neubert J. P. Thayer G. S. Bust J. Watermann C. Coker 2002-06-01T00:00:00Z https://doi.org/10.4401/ag-3488 https://doaj.org/article/302bf79718454f6fb8c3d05a5161b22c EN eng Istituto Nazionale di Geofisica e Vulcanologia (INGV) http://www.annalsofgeophysics.eu/index.php/annals/article/view/3488 https://doaj.org/toc/1593-5213 https://doaj.org/toc/2037-416X doi:10.4401/ag-3488 1593-5213 2037-416X https://doaj.org/article/302bf79718454f6fb8c3d05a5161b22c Annals of Geophysics, Vol 45, Iss 1 (2002) Beacon satellites ionospheric plasma Meteorology. Climatology QC851-999 Geophysics. Cosmic physics QC801-809 article 2002 ftdoajarticles https://doi.org/10.4401/ag-3488 2022-12-30T23:33:37Z In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations). The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates. Article in Journal/Newspaper Greenland Directory of Open Access Journals: DOAJ Articles Greenland Annals of Geophysics 45 1
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Beacon satellites
ionospheric plasma
Meteorology. Climatology
QC851-999
Geophysics. Cosmic physics
QC801-809
spellingShingle Beacon satellites
ionospheric plasma
Meteorology. Climatology
QC851-999
Geophysics. Cosmic physics
QC801-809
T. Neubert
J. P. Thayer
G. S. Bust
J. Watermann
C. Coker
Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations
topic_facet Beacon satellites
ionospheric plasma
Meteorology. Climatology
QC851-999
Geophysics. Cosmic physics
QC801-809
description In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations). The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.
format Article in Journal/Newspaper
author T. Neubert
J. P. Thayer
G. S. Bust
J. Watermann
C. Coker
author_facet T. Neubert
J. P. Thayer
G. S. Bust
J. Watermann
C. Coker
author_sort T. Neubert
title Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations
title_short Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations
title_full Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations
title_fullStr Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations
title_full_unstemmed Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations
title_sort mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations
publisher Istituto Nazionale di Geofisica e Vulcanologia (INGV)
publishDate 2002
url https://doi.org/10.4401/ag-3488
https://doaj.org/article/302bf79718454f6fb8c3d05a5161b22c
geographic Greenland
geographic_facet Greenland
genre Greenland
genre_facet Greenland
op_source Annals of Geophysics, Vol 45, Iss 1 (2002)
op_relation http://www.annalsofgeophysics.eu/index.php/annals/article/view/3488
https://doaj.org/toc/1593-5213
https://doaj.org/toc/2037-416X
doi:10.4401/ag-3488
1593-5213
2037-416X
https://doaj.org/article/302bf79718454f6fb8c3d05a5161b22c
op_doi https://doi.org/10.4401/ag-3488
container_title Annals of Geophysics
container_volume 45
container_issue 1
_version_ 1766017974042361856