Characteristics of Atmospheric Aerosols Over the UAE Inferred From CALIPSO and Sun Photometer Aerosol Optical Depth
Abstract This study provides insights on the composition and variability of atmospheric aerosols over the United Arab Emirates (UAE) by analyzing the atmospheric conditions together with 14 years (2006–2019) of aerosol optical depth (AOD) retrieved from CALIPSO (Cloud‐Aerosol Lidar and Infrared Path...
Published in: | Earth and Space Science |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Geophysical Union (AGU)
2021
|
Subjects: | |
Online Access: | https://doi.org/10.1029/2020EA001360 https://doaj.org/article/2e40b67714db4c29b55b74e123086fc9 |
id |
ftdoajarticles:oai:doaj.org/article:2e40b67714db4c29b55b74e123086fc9 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:2e40b67714db4c29b55b74e123086fc9 2023-05-15T13:06:36+02:00 Characteristics of Atmospheric Aerosols Over the UAE Inferred From CALIPSO and Sun Photometer Aerosol Optical Depth Narendra Nelli Samson Fissehaye Diana Francis Ricardo Fonseca Marouane Temimi Michael Weston Rachid Abida Oleksandr Nesterov 2021-06-01T00:00:00Z https://doi.org/10.1029/2020EA001360 https://doaj.org/article/2e40b67714db4c29b55b74e123086fc9 EN eng American Geophysical Union (AGU) https://doi.org/10.1029/2020EA001360 https://doaj.org/toc/2333-5084 2333-5084 doi:10.1029/2020EA001360 https://doaj.org/article/2e40b67714db4c29b55b74e123086fc9 Earth and Space Science, Vol 8, Iss 6, Pp n/a-n/a (2021) AERONET aerosol extinction coefficient aerosol optical depth (AOD) CALIPSO dust United Arab Emirates (UAE) Astronomy QB1-991 Geology QE1-996.5 article 2021 ftdoajarticles https://doi.org/10.1029/2020EA001360 2022-12-31T09:37:04Z Abstract This study provides insights on the composition and variability of atmospheric aerosols over the United Arab Emirates (UAE) by analyzing the atmospheric conditions together with 14 years (2006–2019) of aerosol optical depth (AOD) retrieved from CALIPSO (Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite, and 7 years of AOD measured from the ground‐based Aerosol Robotic Network (AERONET). We found that mineral dust is the most prevailing aerosol subtype. In addition, polluted dust and polluted continental aerosols are observed mostly in the cold season. The AOD is higher in spring and summer, when the atmospheric conditions are more favorable to the occurrence of dust events. Moreover, there is another peak in winter associated with dust storms triggered by mid‐latitude baroclinic systems. In summer’s daytime, extinction coefficients in excess of 0.2 km−1 are observed up to 3–4 km above the surface, as a result of the warmer and windier conditions. In the cold season and at night, the dust layers are confined to the lower atmosphere below 2 km. On a climatological time scale, we found that the AOD over the UAE has been decreasing since 2009, possibly due to the increasing trend in precipitation and changes in land use. This study highlights the large contribution of dust aerosols to the total aerosol load over the UAE and stresses on the need to account for mineral dust aerosols in climate‐air pollution related studies as well as weather and air quality forecasts. Article in Journal/Newspaper Aerosol Robotic Network Directory of Open Access Journals: DOAJ Articles Earth and Space Science 8 6 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
AERONET aerosol extinction coefficient aerosol optical depth (AOD) CALIPSO dust United Arab Emirates (UAE) Astronomy QB1-991 Geology QE1-996.5 |
spellingShingle |
AERONET aerosol extinction coefficient aerosol optical depth (AOD) CALIPSO dust United Arab Emirates (UAE) Astronomy QB1-991 Geology QE1-996.5 Narendra Nelli Samson Fissehaye Diana Francis Ricardo Fonseca Marouane Temimi Michael Weston Rachid Abida Oleksandr Nesterov Characteristics of Atmospheric Aerosols Over the UAE Inferred From CALIPSO and Sun Photometer Aerosol Optical Depth |
topic_facet |
AERONET aerosol extinction coefficient aerosol optical depth (AOD) CALIPSO dust United Arab Emirates (UAE) Astronomy QB1-991 Geology QE1-996.5 |
description |
Abstract This study provides insights on the composition and variability of atmospheric aerosols over the United Arab Emirates (UAE) by analyzing the atmospheric conditions together with 14 years (2006–2019) of aerosol optical depth (AOD) retrieved from CALIPSO (Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite, and 7 years of AOD measured from the ground‐based Aerosol Robotic Network (AERONET). We found that mineral dust is the most prevailing aerosol subtype. In addition, polluted dust and polluted continental aerosols are observed mostly in the cold season. The AOD is higher in spring and summer, when the atmospheric conditions are more favorable to the occurrence of dust events. Moreover, there is another peak in winter associated with dust storms triggered by mid‐latitude baroclinic systems. In summer’s daytime, extinction coefficients in excess of 0.2 km−1 are observed up to 3–4 km above the surface, as a result of the warmer and windier conditions. In the cold season and at night, the dust layers are confined to the lower atmosphere below 2 km. On a climatological time scale, we found that the AOD over the UAE has been decreasing since 2009, possibly due to the increasing trend in precipitation and changes in land use. This study highlights the large contribution of dust aerosols to the total aerosol load over the UAE and stresses on the need to account for mineral dust aerosols in climate‐air pollution related studies as well as weather and air quality forecasts. |
format |
Article in Journal/Newspaper |
author |
Narendra Nelli Samson Fissehaye Diana Francis Ricardo Fonseca Marouane Temimi Michael Weston Rachid Abida Oleksandr Nesterov |
author_facet |
Narendra Nelli Samson Fissehaye Diana Francis Ricardo Fonseca Marouane Temimi Michael Weston Rachid Abida Oleksandr Nesterov |
author_sort |
Narendra Nelli |
title |
Characteristics of Atmospheric Aerosols Over the UAE Inferred From CALIPSO and Sun Photometer Aerosol Optical Depth |
title_short |
Characteristics of Atmospheric Aerosols Over the UAE Inferred From CALIPSO and Sun Photometer Aerosol Optical Depth |
title_full |
Characteristics of Atmospheric Aerosols Over the UAE Inferred From CALIPSO and Sun Photometer Aerosol Optical Depth |
title_fullStr |
Characteristics of Atmospheric Aerosols Over the UAE Inferred From CALIPSO and Sun Photometer Aerosol Optical Depth |
title_full_unstemmed |
Characteristics of Atmospheric Aerosols Over the UAE Inferred From CALIPSO and Sun Photometer Aerosol Optical Depth |
title_sort |
characteristics of atmospheric aerosols over the uae inferred from calipso and sun photometer aerosol optical depth |
publisher |
American Geophysical Union (AGU) |
publishDate |
2021 |
url |
https://doi.org/10.1029/2020EA001360 https://doaj.org/article/2e40b67714db4c29b55b74e123086fc9 |
genre |
Aerosol Robotic Network |
genre_facet |
Aerosol Robotic Network |
op_source |
Earth and Space Science, Vol 8, Iss 6, Pp n/a-n/a (2021) |
op_relation |
https://doi.org/10.1029/2020EA001360 https://doaj.org/toc/2333-5084 2333-5084 doi:10.1029/2020EA001360 https://doaj.org/article/2e40b67714db4c29b55b74e123086fc9 |
op_doi |
https://doi.org/10.1029/2020EA001360 |
container_title |
Earth and Space Science |
container_volume |
8 |
container_issue |
6 |
_version_ |
1766012852861140992 |