Topography, structural and exhumation history of the Admiralty Mountains region, northern Victoria Land, Antarctica

The Admiralty Mountains region forms the northern termination of the northern Victoria Land, Antarctica. Few quantitative data are available to reconstruct the Cenozoic morpho-tectonic evolution of this sector of the Antarctic plate, where the Admiralty Mountains region forms the northern terminatio...

Full description

Bibliographic Details
Published in:Geoscience Frontiers
Main Authors: Maria Laura Balestrieri, Valerio Olivetti, Federico Rossetti, Cécile Gautheron, Silvia Cattò, Massimiliano Zattin
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2020
Subjects:
Online Access:https://doi.org/10.1016/j.gsf.2020.01.018
https://doaj.org/article/2bd30d7602e84422a31c24673782241b
Description
Summary:The Admiralty Mountains region forms the northern termination of the northern Victoria Land, Antarctica. Few quantitative data are available to reconstruct the Cenozoic morpho-tectonic evolution of this sector of the Antarctic plate, where the Admiralty Mountains region forms the northern termination of the western shoulder of the Mesozoic–Cenozoic West Antarctica Rift System. In this study we combine new low-temperature thermochronological data (apatite fission-track and (U-Th-Sm)/He analyses) with structural and topography analysis. The regional pattern of the fission-track ages shows a general tendency to older ages (80–60 Ma) associated with shortened mean track-lengths in the interior, and younger fission-track ages clustering at 38–26 Ma with long mean track-lengths in the coastal region. Differently from other regions of Victoria Land, the younger ages are found as far as 50–70 km inland. Single grain apatite (U-Th-Sm)/He ages cluster at 50–30 Ma with younger ages in the coastal domain. Topography analysis reveals that the Admiralty Mountains has high local relief, with an area close to the coast, 180 km long and 70 km large, having the highest local relief of >2500 m. This coincides with the location of the youngest fission-track ages. The shape of the area with highest local relief matches the shape of a recently detected low velocity zone beneath the northern TAM, indicating that high topography of the Admiralty Mountains region is likely sustained by a mantle thermal anomaly. We used the obtained constraints on the amount of removed crustal section to reconstruct back-eroded profiles and calculate the erosional load in order to test flexural uplift models. We found that our back-eroded profiles are better reproduced by a constant elastic thickness of intermediate values (Te = 20–30 km). This suggests that, beneath the Admiralty Mountains, the elastic properties of the lithosphere are different with respect to other TAM sectors, likely due to a stationary Cenozoic upper mantle thermal anomaly in the ...