Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis.

In some parts of the Southern Ocean (SO), even though low surface concentrations of iron (Fe) and manganese (Mn) indicate FeMn co-limitation, we still lack an understanding on how Mn and Fe availability influences SO phytoplankton ecophysiology. Therefore, this study investigated the effects of Fe a...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Franziska Pausch, Kai Bischof, Scarlett Trimborn
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2019
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0221959
https://doaj.org/article/2bc56280d3614781aabd415859ed0ff2
Description
Summary:In some parts of the Southern Ocean (SO), even though low surface concentrations of iron (Fe) and manganese (Mn) indicate FeMn co-limitation, we still lack an understanding on how Mn and Fe availability influences SO phytoplankton ecophysiology. Therefore, this study investigated the effects of Fe and Mn limitation alone as well as their combination on growth, photophysiology and particulate organic carbon production of the bloom-forming Antarctic diatom Chaetoceros debilis. Our results clearly show that growth, photochemical efficiency and carbon production of C. debilis were co-limited by Fe and Mn as highest values were only reached when both nutrients were provided. Even though Mn-deficient cells had higher photochemical efficiencies than Fe-limited ones, they, however, displayed similar low growth and POC production rates, indicating that Mn limitation alone drastically impeded the cell's performance. These results demonstrate that similar to low Fe concentrations, low Mn availability inhibits growth and carbon production of C. debilis. As a result from different species-specific trace metal requirements, SO phytoplankton species distribution and productivity may therefore not solely depend on the input of Fe alone, but also critically on Mn acting together as important drivers of SO phytoplankton ecology and biogeochemistry.