Classification and kinematics of the Planpincieux Glacier break-offs using photographic time-lapse analysis

Herein, we present results obtained from time-lapse imagery acquired by a digital single-lens reflex camera during 2014–18 used to monitor the Planpincieux Glacier on the Italian side of the Grandes Jorasses (Mont Blanc massif). We processed the images using image cross-correlation to measure the su...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Daniele Giordan, Niccolò Dematteis, Paolo Allasia, Elena Motta
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press 2020
Subjects:
Online Access:https://doi.org/10.1017/jog.2019.99
https://doaj.org/article/2899cb96034c42828261416fc0dc1146
Description
Summary:Herein, we present results obtained from time-lapse imagery acquired by a digital single-lens reflex camera during 2014–18 used to monitor the Planpincieux Glacier on the Italian side of the Grandes Jorasses (Mont Blanc massif). We processed the images using image cross-correlation to measure the surface kinematics of the most active lobe of the glacier that presents a high velocity and frequent ice detachments. During the monitoring, we observed two or three periods of sharp acceleration per year that culminated with large break-offs followed by analogous decelerations. Overall, we registered more than 350 failures with a volume >100 m3, of which, 14 events had volumes larger than 10 000 m3. The study identified a monotonic positive relationship between the velocity and failure volume that may be used to estimate the volume of the collapses before an event. We identified the thresholds of velocity and acceleration that characterise the activation of the speed-up periods. The study allowed the characterisation of three different instability processes that lead to the break-off of ice chunks from the glacier terminus: (i) disaggregation, (ii) slab fracture and (iii) water tunnelling failure which can be differentiated based on the rheology, the volume involved and the trigger process.