Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations
We performed a field study on mixing and vertical heat transport under the ice cover of an Arctic lake. Mixing intensities were estimated from small-scale oscillations of water temperature and turbulent kinetic energy dissipation rates derived from current velocity fluctuations. Well-developed turbu...
Published in: | Hydrology and Earth System Sciences |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2018
|
Subjects: | |
Online Access: | https://doi.org/10.5194/hess-22-6493-2018 https://doaj.org/article/28248aa54d224562b03c3abad3a08603 |
id |
ftdoajarticles:oai:doaj.org/article:28248aa54d224562b03c3abad3a08603 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:28248aa54d224562b03c3abad3a08603 2023-05-15T14:58:39+02:00 Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations G. Kirillin I. Aslamov M. Leppäranta E. Lindgren 2018-12-01T00:00:00Z https://doi.org/10.5194/hess-22-6493-2018 https://doaj.org/article/28248aa54d224562b03c3abad3a08603 EN eng Copernicus Publications https://www.hydrol-earth-syst-sci.net/22/6493/2018/hess-22-6493-2018.pdf https://doaj.org/toc/1027-5606 https://doaj.org/toc/1607-7938 doi:10.5194/hess-22-6493-2018 1027-5606 1607-7938 https://doaj.org/article/28248aa54d224562b03c3abad3a08603 Hydrology and Earth System Sciences, Vol 22, Pp 6493-6504 (2018) Technology T Environmental technology. Sanitary engineering TD1-1066 Geography. Anthropology. Recreation G Environmental sciences GE1-350 article 2018 ftdoajarticles https://doi.org/10.5194/hess-22-6493-2018 2022-12-31T08:55:46Z We performed a field study on mixing and vertical heat transport under the ice cover of an Arctic lake. Mixing intensities were estimated from small-scale oscillations of water temperature and turbulent kinetic energy dissipation rates derived from current velocity fluctuations. Well-developed turbulent conditions prevailed in the stably stratified interfacial layer separating the ice base from the warmer deep waters. The source of turbulent mixing was identified as whole-lake (barotropic) oscillations of the water body driven by strong wind events over the ice surface. We derive a scaling of ice–water heat flux based on dissipative Kolmogorov scales and successfully tested against measured dissipation rates and under-ice temperature gradients. The results discard the conventional assumption of nearly conductive heat transport within the stratified under-ice layer and suggest contribution of the basal heat flux into the melt of ice cover is higher than commonly assumed. Decline of the seasonal ice cover in the Arctic is currently gaining recognition as a major indicator of climate change. The heat transfer at the ice–water interface remains the least studied among the mechanisms governing the growth and melting of seasonal ice. The outcomes of the study find application in the heat budget of seasonal ice on inland and coastal waters. Article in Journal/Newspaper Arctic Climate change Directory of Open Access Journals: DOAJ Articles Arctic Arctic Lake ENVELOPE(-130.826,-130.826,57.231,57.231) Hydrology and Earth System Sciences 22 12 6493 6504 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Technology T Environmental technology. Sanitary engineering TD1-1066 Geography. Anthropology. Recreation G Environmental sciences GE1-350 |
spellingShingle |
Technology T Environmental technology. Sanitary engineering TD1-1066 Geography. Anthropology. Recreation G Environmental sciences GE1-350 G. Kirillin I. Aslamov M. Leppäranta E. Lindgren Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations |
topic_facet |
Technology T Environmental technology. Sanitary engineering TD1-1066 Geography. Anthropology. Recreation G Environmental sciences GE1-350 |
description |
We performed a field study on mixing and vertical heat transport under the ice cover of an Arctic lake. Mixing intensities were estimated from small-scale oscillations of water temperature and turbulent kinetic energy dissipation rates derived from current velocity fluctuations. Well-developed turbulent conditions prevailed in the stably stratified interfacial layer separating the ice base from the warmer deep waters. The source of turbulent mixing was identified as whole-lake (barotropic) oscillations of the water body driven by strong wind events over the ice surface. We derive a scaling of ice–water heat flux based on dissipative Kolmogorov scales and successfully tested against measured dissipation rates and under-ice temperature gradients. The results discard the conventional assumption of nearly conductive heat transport within the stratified under-ice layer and suggest contribution of the basal heat flux into the melt of ice cover is higher than commonly assumed. Decline of the seasonal ice cover in the Arctic is currently gaining recognition as a major indicator of climate change. The heat transfer at the ice–water interface remains the least studied among the mechanisms governing the growth and melting of seasonal ice. The outcomes of the study find application in the heat budget of seasonal ice on inland and coastal waters. |
format |
Article in Journal/Newspaper |
author |
G. Kirillin I. Aslamov M. Leppäranta E. Lindgren |
author_facet |
G. Kirillin I. Aslamov M. Leppäranta E. Lindgren |
author_sort |
G. Kirillin |
title |
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations |
title_short |
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations |
title_full |
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations |
title_fullStr |
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations |
title_full_unstemmed |
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations |
title_sort |
turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations |
publisher |
Copernicus Publications |
publishDate |
2018 |
url |
https://doi.org/10.5194/hess-22-6493-2018 https://doaj.org/article/28248aa54d224562b03c3abad3a08603 |
long_lat |
ENVELOPE(-130.826,-130.826,57.231,57.231) |
geographic |
Arctic Arctic Lake |
geographic_facet |
Arctic Arctic Lake |
genre |
Arctic Climate change |
genre_facet |
Arctic Climate change |
op_source |
Hydrology and Earth System Sciences, Vol 22, Pp 6493-6504 (2018) |
op_relation |
https://www.hydrol-earth-syst-sci.net/22/6493/2018/hess-22-6493-2018.pdf https://doaj.org/toc/1027-5606 https://doaj.org/toc/1607-7938 doi:10.5194/hess-22-6493-2018 1027-5606 1607-7938 https://doaj.org/article/28248aa54d224562b03c3abad3a08603 |
op_doi |
https://doi.org/10.5194/hess-22-6493-2018 |
container_title |
Hydrology and Earth System Sciences |
container_volume |
22 |
container_issue |
12 |
container_start_page |
6493 |
op_container_end_page |
6504 |
_version_ |
1766330776253628416 |