Detection of ice core particles via deep neural networks

Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, r...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: N. Maffezzoli, E. Cook, W. G. M. van der Bilt, E. N. Støren, D. Festi, F. Muthreich, A. W. R. Seddon, F. Burgay, G. Baccolo, A. R. F. Mygind, T. Petersen, A. Spolaor, S. Vascon, M. Pelillo, P. Ferretti, R. S. dos Reis, J. C. Simões, Y. Ronen, B. Delmonte, M. Viccaro, J. P. Steffensen, D. Dahl-Jensen, K. H. Nisancioglu, C. Barbante
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2023
Subjects:
Online Access:https://doi.org/10.5194/tc-17-539-2023
https://doaj.org/article/26973bf1a54e40ab8f5af7156ff70189
id ftdoajarticles:oai:doaj.org/article:26973bf1a54e40ab8f5af7156ff70189
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:26973bf1a54e40ab8f5af7156ff70189 2023-05-15T16:38:33+02:00 Detection of ice core particles via deep neural networks N. Maffezzoli E. Cook W. G. M. van der Bilt E. N. Støren D. Festi F. Muthreich A. W. R. Seddon F. Burgay G. Baccolo A. R. F. Mygind T. Petersen A. Spolaor S. Vascon M. Pelillo P. Ferretti R. S. dos Reis J. C. Simões Y. Ronen B. Delmonte M. Viccaro J. P. Steffensen D. Dahl-Jensen K. H. Nisancioglu C. Barbante 2023-02-01T00:00:00Z https://doi.org/10.5194/tc-17-539-2023 https://doaj.org/article/26973bf1a54e40ab8f5af7156ff70189 EN eng Copernicus Publications https://tc.copernicus.org/articles/17/539/2023/tc-17-539-2023.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-17-539-2023 1994-0416 1994-0424 https://doaj.org/article/26973bf1a54e40ab8f5af7156ff70189 The Cryosphere, Vol 17, Pp 539-565 (2023) Environmental sciences GE1-350 Geology QE1-996.5 article 2023 ftdoajarticles https://doi.org/10.5194/tc-17-539-2023 2023-02-12T01:31:09Z Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge, and often restrict sampling strategies. To help overcome these limitations, we present a framework based on flow imaging microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify seven commonly found classes, namely mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen ( Corylus avellana , Quercus robur , Quercus suber ), and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system's potential and its limitations with respect to the detection of mineral dust, pollen grains, and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non-destructive, fully reproducible, and does not require any sample preparation procedures. The presented framework can bolster research in the field by cutting down processing time, supporting human-operated microscopy, and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented. Article in Journal/Newspaper ice core The Cryosphere Directory of Open Access Journals: DOAJ Articles The Cryosphere 17 2 539 565
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Environmental sciences
GE1-350
Geology
QE1-996.5
spellingShingle Environmental sciences
GE1-350
Geology
QE1-996.5
N. Maffezzoli
E. Cook
W. G. M. van der Bilt
E. N. Støren
D. Festi
F. Muthreich
A. W. R. Seddon
F. Burgay
G. Baccolo
A. R. F. Mygind
T. Petersen
A. Spolaor
S. Vascon
M. Pelillo
P. Ferretti
R. S. dos Reis
J. C. Simões
Y. Ronen
B. Delmonte
M. Viccaro
J. P. Steffensen
D. Dahl-Jensen
K. H. Nisancioglu
C. Barbante
Detection of ice core particles via deep neural networks
topic_facet Environmental sciences
GE1-350
Geology
QE1-996.5
description Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge, and often restrict sampling strategies. To help overcome these limitations, we present a framework based on flow imaging microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify seven commonly found classes, namely mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen ( Corylus avellana , Quercus robur , Quercus suber ), and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system's potential and its limitations with respect to the detection of mineral dust, pollen grains, and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non-destructive, fully reproducible, and does not require any sample preparation procedures. The presented framework can bolster research in the field by cutting down processing time, supporting human-operated microscopy, and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented.
format Article in Journal/Newspaper
author N. Maffezzoli
E. Cook
W. G. M. van der Bilt
E. N. Støren
D. Festi
F. Muthreich
A. W. R. Seddon
F. Burgay
G. Baccolo
A. R. F. Mygind
T. Petersen
A. Spolaor
S. Vascon
M. Pelillo
P. Ferretti
R. S. dos Reis
J. C. Simões
Y. Ronen
B. Delmonte
M. Viccaro
J. P. Steffensen
D. Dahl-Jensen
K. H. Nisancioglu
C. Barbante
author_facet N. Maffezzoli
E. Cook
W. G. M. van der Bilt
E. N. Støren
D. Festi
F. Muthreich
A. W. R. Seddon
F. Burgay
G. Baccolo
A. R. F. Mygind
T. Petersen
A. Spolaor
S. Vascon
M. Pelillo
P. Ferretti
R. S. dos Reis
J. C. Simões
Y. Ronen
B. Delmonte
M. Viccaro
J. P. Steffensen
D. Dahl-Jensen
K. H. Nisancioglu
C. Barbante
author_sort N. Maffezzoli
title Detection of ice core particles via deep neural networks
title_short Detection of ice core particles via deep neural networks
title_full Detection of ice core particles via deep neural networks
title_fullStr Detection of ice core particles via deep neural networks
title_full_unstemmed Detection of ice core particles via deep neural networks
title_sort detection of ice core particles via deep neural networks
publisher Copernicus Publications
publishDate 2023
url https://doi.org/10.5194/tc-17-539-2023
https://doaj.org/article/26973bf1a54e40ab8f5af7156ff70189
genre ice core
The Cryosphere
genre_facet ice core
The Cryosphere
op_source The Cryosphere, Vol 17, Pp 539-565 (2023)
op_relation https://tc.copernicus.org/articles/17/539/2023/tc-17-539-2023.pdf
https://doaj.org/toc/1994-0416
https://doaj.org/toc/1994-0424
doi:10.5194/tc-17-539-2023
1994-0416
1994-0424
https://doaj.org/article/26973bf1a54e40ab8f5af7156ff70189
op_doi https://doi.org/10.5194/tc-17-539-2023
container_title The Cryosphere
container_volume 17
container_issue 2
container_start_page 539
op_container_end_page 565
_version_ 1766028846005485568