A New Kind of Shift Operators for Infinite Circular and Spherical Wells

A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the...

Full description

Bibliographic Details
Published in:Advances in Mathematical Physics
Main Authors: Guo-Hua Sun, K. D. Launey, T. Dytrych, Shi-Hai Dong, J. P. Draayer
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2014
Subjects:
IPY
Online Access:https://doi.org/10.1155/2014/987376
https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97
id ftdoajarticles:oai:doaj.org/article:2501ef834bb4469f88b0fd7aab2efa97
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:2501ef834bb4469f88b0fd7aab2efa97 2024-09-15T18:15:12+00:00 A New Kind of Shift Operators for Infinite Circular and Spherical Wells Guo-Hua Sun K. D. Launey T. Dytrych Shi-Hai Dong J. P. Draayer 2014-01-01T00:00:00Z https://doi.org/10.1155/2014/987376 https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97 EN eng Wiley http://dx.doi.org/10.1155/2014/987376 https://doaj.org/toc/1687-9120 https://doaj.org/toc/1687-9139 1687-9120 1687-9139 doi:10.1155/2014/987376 https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97 Advances in Mathematical Physics, Vol 2014 (2014) Physics QC1-999 article 2014 ftdoajarticles https://doi.org/10.1155/2014/987376 2024-08-05T17:48:35Z A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2) symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r) and ψ(l ± 1)(m±1)(r). Article in Journal/Newspaper IPY Directory of Open Access Journals: DOAJ Articles Advances in Mathematical Physics 2014 1 7
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Guo-Hua Sun
K. D. Launey
T. Dytrych
Shi-Hai Dong
J. P. Draayer
A New Kind of Shift Operators for Infinite Circular and Spherical Wells
topic_facet Physics
QC1-999
description A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2) symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r) and ψ(l ± 1)(m±1)(r).
format Article in Journal/Newspaper
author Guo-Hua Sun
K. D. Launey
T. Dytrych
Shi-Hai Dong
J. P. Draayer
author_facet Guo-Hua Sun
K. D. Launey
T. Dytrych
Shi-Hai Dong
J. P. Draayer
author_sort Guo-Hua Sun
title A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_short A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_full A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_fullStr A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_full_unstemmed A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_sort new kind of shift operators for infinite circular and spherical wells
publisher Wiley
publishDate 2014
url https://doi.org/10.1155/2014/987376
https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97
genre IPY
genre_facet IPY
op_source Advances in Mathematical Physics, Vol 2014 (2014)
op_relation http://dx.doi.org/10.1155/2014/987376
https://doaj.org/toc/1687-9120
https://doaj.org/toc/1687-9139
1687-9120
1687-9139
doi:10.1155/2014/987376
https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97
op_doi https://doi.org/10.1155/2014/987376
container_title Advances in Mathematical Physics
container_volume 2014
container_start_page 1
op_container_end_page 7
_version_ 1810452957898997760