A New Kind of Shift Operators for Infinite Circular and Spherical Wells
A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the...
Published in: | Advances in Mathematical Physics |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Wiley
2014
|
Subjects: | |
Online Access: | https://doi.org/10.1155/2014/987376 https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97 |
id |
ftdoajarticles:oai:doaj.org/article:2501ef834bb4469f88b0fd7aab2efa97 |
---|---|
record_format |
openpolar |
spelling |
ftdoajarticles:oai:doaj.org/article:2501ef834bb4469f88b0fd7aab2efa97 2024-09-15T18:15:12+00:00 A New Kind of Shift Operators for Infinite Circular and Spherical Wells Guo-Hua Sun K. D. Launey T. Dytrych Shi-Hai Dong J. P. Draayer 2014-01-01T00:00:00Z https://doi.org/10.1155/2014/987376 https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97 EN eng Wiley http://dx.doi.org/10.1155/2014/987376 https://doaj.org/toc/1687-9120 https://doaj.org/toc/1687-9139 1687-9120 1687-9139 doi:10.1155/2014/987376 https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97 Advances in Mathematical Physics, Vol 2014 (2014) Physics QC1-999 article 2014 ftdoajarticles https://doi.org/10.1155/2014/987376 2024-08-05T17:48:35Z A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2) symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r) and ψ(l ± 1)(m±1)(r). Article in Journal/Newspaper IPY Directory of Open Access Journals: DOAJ Articles Advances in Mathematical Physics 2014 1 7 |
institution |
Open Polar |
collection |
Directory of Open Access Journals: DOAJ Articles |
op_collection_id |
ftdoajarticles |
language |
English |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Guo-Hua Sun K. D. Launey T. Dytrych Shi-Hai Dong J. P. Draayer A New Kind of Shift Operators for Infinite Circular and Spherical Wells |
topic_facet |
Physics QC1-999 |
description |
A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2) symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r) and ψ(l ± 1)(m±1)(r). |
format |
Article in Journal/Newspaper |
author |
Guo-Hua Sun K. D. Launey T. Dytrych Shi-Hai Dong J. P. Draayer |
author_facet |
Guo-Hua Sun K. D. Launey T. Dytrych Shi-Hai Dong J. P. Draayer |
author_sort |
Guo-Hua Sun |
title |
A New Kind of Shift Operators for Infinite Circular and Spherical Wells |
title_short |
A New Kind of Shift Operators for Infinite Circular and Spherical Wells |
title_full |
A New Kind of Shift Operators for Infinite Circular and Spherical Wells |
title_fullStr |
A New Kind of Shift Operators for Infinite Circular and Spherical Wells |
title_full_unstemmed |
A New Kind of Shift Operators for Infinite Circular and Spherical Wells |
title_sort |
new kind of shift operators for infinite circular and spherical wells |
publisher |
Wiley |
publishDate |
2014 |
url |
https://doi.org/10.1155/2014/987376 https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97 |
genre |
IPY |
genre_facet |
IPY |
op_source |
Advances in Mathematical Physics, Vol 2014 (2014) |
op_relation |
http://dx.doi.org/10.1155/2014/987376 https://doaj.org/toc/1687-9120 https://doaj.org/toc/1687-9139 1687-9120 1687-9139 doi:10.1155/2014/987376 https://doaj.org/article/2501ef834bb4469f88b0fd7aab2efa97 |
op_doi |
https://doi.org/10.1155/2014/987376 |
container_title |
Advances in Mathematical Physics |
container_volume |
2014 |
container_start_page |
1 |
op_container_end_page |
7 |
_version_ |
1810452957898997760 |