Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations

>We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: S. S. Dhomse, D. Kinnison, M. P. Chipperfield, R. J. Salawitch, I. Cionni, M. I. Hegglin, N. L. Abraham, H. Akiyoshi, A. T. Archibald, E. M. Bednarz, S. Bekki, P. Braesicke, N. Butchart, M. Dameris, M. Deushi, S. Frith, S. C. Hardiman, B. Hassler, L. W. Horowitz, R.-M. Hu, P. Jöckel, B. Josse, O. Kirner, S. Kremser, U. Langematz, J. Lewis, M. Marchand, M. Lin, E. Mancini, V. Marécal, M. Michou, O. Morgenstern, F. M. O'Connor, L. Oman, G. Pitari, D. A. Plummer, J. A. Pyle, L. E. Revell, E. Rozanov, R. Schofield
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2018
Subjects:
Online Access:https://doi.org/10.5194/acp-18-8409-2018
https://doaj.org/article/23e7296a7cbf43c9b59eae7c9dfb0c44
id ftdoajarticles:oai:doaj.org/article:23e7296a7cbf43c9b59eae7c9dfb0c44
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:23e7296a7cbf43c9b59eae7c9dfb0c44 2023-05-15T13:34:44+02:00 Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations S. S. Dhomse D. Kinnison M. P. Chipperfield R. J. Salawitch I. Cionni M. I. Hegglin N. L. Abraham H. Akiyoshi A. T. Archibald E. M. Bednarz S. Bekki P. Braesicke N. Butchart M. Dameris M. Deushi S. Frith S. C. Hardiman B. Hassler L. W. Horowitz R.-M. Hu P. Jöckel B. Josse O. Kirner S. Kremser U. Langematz J. Lewis M. Marchand M. Lin E. Mancini V. Marécal M. Michou O. Morgenstern F. M. O'Connor L. Oman G. Pitari D. A. Plummer J. A. Pyle L. E. Revell E. Rozanov R. Schofield 2018-06-01T00:00:00Z https://doi.org/10.5194/acp-18-8409-2018 https://doaj.org/article/23e7296a7cbf43c9b59eae7c9dfb0c44 EN eng Copernicus Publications https://www.atmos-chem-phys.net/18/8409/2018/acp-18-8409-2018.pdf https://doaj.org/toc/1680-7316 https://doaj.org/toc/1680-7324 doi:10.5194/acp-18-8409-2018 1680-7316 1680-7324 https://doaj.org/article/23e7296a7cbf43c9b59eae7c9dfb0c44 Atmospheric Chemistry and Physics, Vol 18, Pp 8409-8438 (2018) Physics QC1-999 Chemistry QD1-999 article 2018 ftdoajarticles https://doi.org/10.5194/acp-18-8409-2018 2022-12-31T04:03:08Z >We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1 σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and ... Article in Journal/Newspaper Antarc* Antarctic Arctic Climate change Directory of Open Access Journals: DOAJ Articles Arctic Antarctic The Antarctic Atmospheric Chemistry and Physics 18 11 8409 8438
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
S. S. Dhomse
D. Kinnison
M. P. Chipperfield
R. J. Salawitch
I. Cionni
M. I. Hegglin
N. L. Abraham
H. Akiyoshi
A. T. Archibald
E. M. Bednarz
S. Bekki
P. Braesicke
N. Butchart
M. Dameris
M. Deushi
S. Frith
S. C. Hardiman
B. Hassler
L. W. Horowitz
R.-M. Hu
P. Jöckel
B. Josse
O. Kirner
S. Kremser
U. Langematz
J. Lewis
M. Marchand
M. Lin
E. Mancini
V. Marécal
M. Michou
O. Morgenstern
F. M. O'Connor
L. Oman
G. Pitari
D. A. Plummer
J. A. Pyle
L. E. Revell
E. Rozanov
R. Schofield
Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
topic_facet Physics
QC1-999
Chemistry
QD1-999
description >We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1 σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and ...
format Article in Journal/Newspaper
author S. S. Dhomse
D. Kinnison
M. P. Chipperfield
R. J. Salawitch
I. Cionni
M. I. Hegglin
N. L. Abraham
H. Akiyoshi
A. T. Archibald
E. M. Bednarz
S. Bekki
P. Braesicke
N. Butchart
M. Dameris
M. Deushi
S. Frith
S. C. Hardiman
B. Hassler
L. W. Horowitz
R.-M. Hu
P. Jöckel
B. Josse
O. Kirner
S. Kremser
U. Langematz
J. Lewis
M. Marchand
M. Lin
E. Mancini
V. Marécal
M. Michou
O. Morgenstern
F. M. O'Connor
L. Oman
G. Pitari
D. A. Plummer
J. A. Pyle
L. E. Revell
E. Rozanov
R. Schofield
author_facet S. S. Dhomse
D. Kinnison
M. P. Chipperfield
R. J. Salawitch
I. Cionni
M. I. Hegglin
N. L. Abraham
H. Akiyoshi
A. T. Archibald
E. M. Bednarz
S. Bekki
P. Braesicke
N. Butchart
M. Dameris
M. Deushi
S. Frith
S. C. Hardiman
B. Hassler
L. W. Horowitz
R.-M. Hu
P. Jöckel
B. Josse
O. Kirner
S. Kremser
U. Langematz
J. Lewis
M. Marchand
M. Lin
E. Mancini
V. Marécal
M. Michou
O. Morgenstern
F. M. O'Connor
L. Oman
G. Pitari
D. A. Plummer
J. A. Pyle
L. E. Revell
E. Rozanov
R. Schofield
author_sort S. S. Dhomse
title Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
title_short Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
title_full Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
title_fullStr Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
title_full_unstemmed Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
title_sort estimates of ozone return dates from chemistry-climate model initiative simulations
publisher Copernicus Publications
publishDate 2018
url https://doi.org/10.5194/acp-18-8409-2018
https://doaj.org/article/23e7296a7cbf43c9b59eae7c9dfb0c44
geographic Arctic
Antarctic
The Antarctic
geographic_facet Arctic
Antarctic
The Antarctic
genre Antarc*
Antarctic
Arctic
Climate change
genre_facet Antarc*
Antarctic
Arctic
Climate change
op_source Atmospheric Chemistry and Physics, Vol 18, Pp 8409-8438 (2018)
op_relation https://www.atmos-chem-phys.net/18/8409/2018/acp-18-8409-2018.pdf
https://doaj.org/toc/1680-7316
https://doaj.org/toc/1680-7324
doi:10.5194/acp-18-8409-2018
1680-7316
1680-7324
https://doaj.org/article/23e7296a7cbf43c9b59eae7c9dfb0c44
op_doi https://doi.org/10.5194/acp-18-8409-2018
container_title Atmospheric Chemistry and Physics
container_volume 18
container_issue 11
container_start_page 8409
op_container_end_page 8438
_version_ 1766056812365217792