Complexity signatures in the geomagnetic H component recorded by the Tromsø magnetometer (70° N, 19° E) over the last quarter of a century

Solar disturbances, depending on the orientation of the interplanetary magnetic field, typically result in perturbations of the geomagnetic field as observed by magnetometers on the ground. Here, the geomagnetic field's horizontal component, as measured by the ground-based observatory-standard...

Full description

Bibliographic Details
Published in:Nonlinear Processes in Geophysics
Main Author: C. M. Hall
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2014
Subjects:
Q
Online Access:https://doi.org/10.5194/npg-21-1051-2014
https://doaj.org/article/1e732e4430b54def9b62e2b270f58c70
Description
Summary:Solar disturbances, depending on the orientation of the interplanetary magnetic field, typically result in perturbations of the geomagnetic field as observed by magnetometers on the ground. Here, the geomagnetic field's horizontal component, as measured by the ground-based observatory-standard magnetometer at Tromsø (70° N, 19° E), is examined for signatures of complexity. Twenty-five year-long 10 s resolution data sets are analysed for fluctuations with timescales of less than 1 day. Quantile–quantile plots are employed first, revealing that the fluctuations are better represented by Cauchy rather than Gaussian distributions. Thereafter, both spectral density and detrended fluctuation analysis methods are used to estimate values of the generalized Hurst exponent, α. The results are then compared with independent findings. Inspection and comparison of the spectral and detrended fluctuation analyses reveal that timescales between 1 h and 1 day are characterized by fractional Brownian motion with a generalized Hurst exponent of ~1.4, whereas including timescales as short as 1 min suggests fractional Brownian motion with a generalized Hurst exponent of ~1.6.