Regional Morpho-Kinematic Inventory of Slope Movements in Northern Norway

Mountain slopes in periglacial environments are affected by frost- and gravity-driven processes that shape the landscape. Both rock glaciers and rockslides have been intensively inventoried worldwide. Although most inventories are traditionally based on morphologic criteria, kinematic approaches bas...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Line Rouyet, Karianne Staalesen Lilleøren, Martina Böhme, Louise Mary Vick, Reynald Delaloye, Bernd Etzelmüller, Tom Rune Lauknes, Yngvar Larsen, Lars Harald Blikra
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2021
Subjects:
Q
Online Access:https://doi.org/10.3389/feart.2021.681088
https://doaj.org/article/1cca36e945a949b3b8e77e4092b938fe
id ftdoajarticles:oai:doaj.org/article:1cca36e945a949b3b8e77e4092b938fe
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:1cca36e945a949b3b8e77e4092b938fe 2023-05-15T16:21:59+02:00 Regional Morpho-Kinematic Inventory of Slope Movements in Northern Norway Line Rouyet Karianne Staalesen Lilleøren Martina Böhme Louise Mary Vick Reynald Delaloye Bernd Etzelmüller Tom Rune Lauknes Yngvar Larsen Lars Harald Blikra 2021-11-01T00:00:00Z https://doi.org/10.3389/feart.2021.681088 https://doaj.org/article/1cca36e945a949b3b8e77e4092b938fe EN eng Frontiers Media S.A. https://www.frontiersin.org/articles/10.3389/feart.2021.681088/full https://doaj.org/toc/2296-6463 2296-6463 doi:10.3389/feart.2021.681088 https://doaj.org/article/1cca36e945a949b3b8e77e4092b938fe Frontiers in Earth Science, Vol 9 (2021) slope movements InSAR periglacial permafrost subarctic Norway Science Q article 2021 ftdoajarticles https://doi.org/10.3389/feart.2021.681088 2022-12-31T05:21:34Z Mountain slopes in periglacial environments are affected by frost- and gravity-driven processes that shape the landscape. Both rock glaciers and rockslides have been intensively inventoried worldwide. Although most inventories are traditionally based on morphologic criteria, kinematic approaches based on satellite remote sensing have more recently been used to identify moving landforms at the regional scale. In this study, we developed simplified Interferometric Synthetic Aperture Radar (InSAR) products to inventory ground velocity in a region in Northern Norway covering approximately 7,500 km2. We used a multiple temporal baseline InSAR stacking procedure based on 2015–2019 ascending and descending Sentinel-1 images to take advantage of a large set of interferograms and exploit different detection capabilities. First, moving areas are classified according to six velocity brackets, and morphologically associated to six landform types (rock glaciers, rockslides, glaciers/moraines, talus/scree deposits, solifluction/cryoturbation and composite landforms). The kinematic inventory shows that the velocity ranges and spatial distribution of the different types of slope processes vary greatly within the study area. Second, we exploit InSAR to update pre-existing inventories of rock glaciers and rockslides in the region. Landform delineations and divisions are refined, and newly detected landforms (54 rock glaciers and 20 rockslides) are incorporated into the databases. The updated inventories consist of 414 rock glacier units within 340 single- or multi-unit(s) systems and 117 rockslides. A kinematic attribute assigned to each inventoried landform documents the order of magnitude of the creep rate. Finally, we show that topo-climatic variables influence the spatial distribution of the rock glaciers. Their mean elevation increases toward the continental interior with a dominance of relict landforms close to the land-sea margin and an increased occurrence of active landforms further inland. Both rock glaciers and ... Article in Journal/Newspaper glacier Northern Norway permafrost Subarctic Directory of Open Access Journals: DOAJ Articles Norway Frontiers in Earth Science 9
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic slope movements
InSAR
periglacial
permafrost
subarctic
Norway
Science
Q
spellingShingle slope movements
InSAR
periglacial
permafrost
subarctic
Norway
Science
Q
Line Rouyet
Karianne Staalesen Lilleøren
Martina Böhme
Louise Mary Vick
Reynald Delaloye
Bernd Etzelmüller
Tom Rune Lauknes
Yngvar Larsen
Lars Harald Blikra
Regional Morpho-Kinematic Inventory of Slope Movements in Northern Norway
topic_facet slope movements
InSAR
periglacial
permafrost
subarctic
Norway
Science
Q
description Mountain slopes in periglacial environments are affected by frost- and gravity-driven processes that shape the landscape. Both rock glaciers and rockslides have been intensively inventoried worldwide. Although most inventories are traditionally based on morphologic criteria, kinematic approaches based on satellite remote sensing have more recently been used to identify moving landforms at the regional scale. In this study, we developed simplified Interferometric Synthetic Aperture Radar (InSAR) products to inventory ground velocity in a region in Northern Norway covering approximately 7,500 km2. We used a multiple temporal baseline InSAR stacking procedure based on 2015–2019 ascending and descending Sentinel-1 images to take advantage of a large set of interferograms and exploit different detection capabilities. First, moving areas are classified according to six velocity brackets, and morphologically associated to six landform types (rock glaciers, rockslides, glaciers/moraines, talus/scree deposits, solifluction/cryoturbation and composite landforms). The kinematic inventory shows that the velocity ranges and spatial distribution of the different types of slope processes vary greatly within the study area. Second, we exploit InSAR to update pre-existing inventories of rock glaciers and rockslides in the region. Landform delineations and divisions are refined, and newly detected landforms (54 rock glaciers and 20 rockslides) are incorporated into the databases. The updated inventories consist of 414 rock glacier units within 340 single- or multi-unit(s) systems and 117 rockslides. A kinematic attribute assigned to each inventoried landform documents the order of magnitude of the creep rate. Finally, we show that topo-climatic variables influence the spatial distribution of the rock glaciers. Their mean elevation increases toward the continental interior with a dominance of relict landforms close to the land-sea margin and an increased occurrence of active landforms further inland. Both rock glaciers and ...
format Article in Journal/Newspaper
author Line Rouyet
Karianne Staalesen Lilleøren
Martina Böhme
Louise Mary Vick
Reynald Delaloye
Bernd Etzelmüller
Tom Rune Lauknes
Yngvar Larsen
Lars Harald Blikra
author_facet Line Rouyet
Karianne Staalesen Lilleøren
Martina Böhme
Louise Mary Vick
Reynald Delaloye
Bernd Etzelmüller
Tom Rune Lauknes
Yngvar Larsen
Lars Harald Blikra
author_sort Line Rouyet
title Regional Morpho-Kinematic Inventory of Slope Movements in Northern Norway
title_short Regional Morpho-Kinematic Inventory of Slope Movements in Northern Norway
title_full Regional Morpho-Kinematic Inventory of Slope Movements in Northern Norway
title_fullStr Regional Morpho-Kinematic Inventory of Slope Movements in Northern Norway
title_full_unstemmed Regional Morpho-Kinematic Inventory of Slope Movements in Northern Norway
title_sort regional morpho-kinematic inventory of slope movements in northern norway
publisher Frontiers Media S.A.
publishDate 2021
url https://doi.org/10.3389/feart.2021.681088
https://doaj.org/article/1cca36e945a949b3b8e77e4092b938fe
geographic Norway
geographic_facet Norway
genre glacier
Northern Norway
permafrost
Subarctic
genre_facet glacier
Northern Norway
permafrost
Subarctic
op_source Frontiers in Earth Science, Vol 9 (2021)
op_relation https://www.frontiersin.org/articles/10.3389/feart.2021.681088/full
https://doaj.org/toc/2296-6463
2296-6463
doi:10.3389/feart.2021.681088
https://doaj.org/article/1cca36e945a949b3b8e77e4092b938fe
op_doi https://doi.org/10.3389/feart.2021.681088
container_title Frontiers in Earth Science
container_volume 9
_version_ 1766009948489121792