Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)

Arctic rain on snow (ROS) deposits liquid water onto existing snowpacks. Upon refreezing, this can form icy crusts at the surface or within the snowpack. By altering radar backscatter and microwave emissivity, ROS over sea ice can influence the accuracy of sea ice variables retrieved from satellite...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: J. Stroeve, V. Nandan, R. Willatt, R. Dadic, P. Rostosky, M. Gallagher, R. Mallett, A. Barrett, S. Hendricks, R. Tonboe, M. McCrystall, M. Serreze, L. Thielke, G. Spreen, T. Newman, J. Yackel, R. Ricker, M. Tsamados, A. Macfarlane, H.-R. Hannula, M. Schneebeli
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://doi.org/10.5194/tc-16-4223-2022
https://doaj.org/article/103dfb3ad8c44f6ea39ca98a98ff9d2e
id ftdoajarticles:oai:doaj.org/article:103dfb3ad8c44f6ea39ca98a98ff9d2e
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:103dfb3ad8c44f6ea39ca98a98ff9d2e 2023-05-15T14:51:57+02:00 Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) J. Stroeve V. Nandan R. Willatt R. Dadic P. Rostosky M. Gallagher R. Mallett A. Barrett S. Hendricks R. Tonboe M. McCrystall M. Serreze L. Thielke G. Spreen T. Newman J. Yackel R. Ricker M. Tsamados A. Macfarlane H.-R. Hannula M. Schneebeli 2022-10-01T00:00:00Z https://doi.org/10.5194/tc-16-4223-2022 https://doaj.org/article/103dfb3ad8c44f6ea39ca98a98ff9d2e EN eng Copernicus Publications https://tc.copernicus.org/articles/16/4223/2022/tc-16-4223-2022.pdf https://doaj.org/toc/1994-0416 https://doaj.org/toc/1994-0424 doi:10.5194/tc-16-4223-2022 1994-0416 1994-0424 https://doaj.org/article/103dfb3ad8c44f6ea39ca98a98ff9d2e The Cryosphere, Vol 16, Pp 4223-4250 (2022) Environmental sciences GE1-350 Geology QE1-996.5 article 2022 ftdoajarticles https://doi.org/10.5194/tc-16-4223-2022 2022-12-30T20:51:56Z Arctic rain on snow (ROS) deposits liquid water onto existing snowpacks. Upon refreezing, this can form icy crusts at the surface or within the snowpack. By altering radar backscatter and microwave emissivity, ROS over sea ice can influence the accuracy of sea ice variables retrieved from satellite radar altimetry, scatterometers, and passive microwave radiometers. During the Arctic Ocean MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, there was an unprecedented opportunity to observe a ROS event using in situ active and passive microwave instruments similar to those deployed on satellite platforms. During liquid water accumulation in the snowpack from rain and increased melt, there was a 4-fold decrease in radar energy returned at Ku- and Ka-bands. After the snowpack refroze and ice layers formed, this decrease was followed by a 6-fold increase in returned energy. Besides altering the radar backscatter, analysis of the returned waveforms shows the waveform shape changed in response to rain and refreezing. Microwave emissivity at 19 and 89 GHz increased with increasing liquid water content and decreased as the snowpack refroze, yet subsequent ice layers altered the polarization difference. Corresponding analysis of the CryoSat-2 waveform shape and backscatter as well as AMSR2 brightness temperatures further shows that the rain and refreeze were significant enough to impact satellite returns. Our analysis provides the first detailed in situ analysis of the impacts of ROS and subsequent refreezing on both active and passive microwave observations, providing important baseline knowledge for detecting ROS over sea ice and assessing their impacts on satellite-derived sea ice variables. Article in Journal/Newspaper Arctic Arctic Ocean Sea ice The Cryosphere Directory of Open Access Journals: DOAJ Articles Arctic Arctic Ocean The Cryosphere 16 10 4223 4250
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
topic Environmental sciences
GE1-350
Geology
QE1-996.5
spellingShingle Environmental sciences
GE1-350
Geology
QE1-996.5
J. Stroeve
V. Nandan
R. Willatt
R. Dadic
P. Rostosky
M. Gallagher
R. Mallett
A. Barrett
S. Hendricks
R. Tonboe
M. McCrystall
M. Serreze
L. Thielke
G. Spreen
T. Newman
J. Yackel
R. Ricker
M. Tsamados
A. Macfarlane
H.-R. Hannula
M. Schneebeli
Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
topic_facet Environmental sciences
GE1-350
Geology
QE1-996.5
description Arctic rain on snow (ROS) deposits liquid water onto existing snowpacks. Upon refreezing, this can form icy crusts at the surface or within the snowpack. By altering radar backscatter and microwave emissivity, ROS over sea ice can influence the accuracy of sea ice variables retrieved from satellite radar altimetry, scatterometers, and passive microwave radiometers. During the Arctic Ocean MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, there was an unprecedented opportunity to observe a ROS event using in situ active and passive microwave instruments similar to those deployed on satellite platforms. During liquid water accumulation in the snowpack from rain and increased melt, there was a 4-fold decrease in radar energy returned at Ku- and Ka-bands. After the snowpack refroze and ice layers formed, this decrease was followed by a 6-fold increase in returned energy. Besides altering the radar backscatter, analysis of the returned waveforms shows the waveform shape changed in response to rain and refreezing. Microwave emissivity at 19 and 89 GHz increased with increasing liquid water content and decreased as the snowpack refroze, yet subsequent ice layers altered the polarization difference. Corresponding analysis of the CryoSat-2 waveform shape and backscatter as well as AMSR2 brightness temperatures further shows that the rain and refreeze were significant enough to impact satellite returns. Our analysis provides the first detailed in situ analysis of the impacts of ROS and subsequent refreezing on both active and passive microwave observations, providing important baseline knowledge for detecting ROS over sea ice and assessing their impacts on satellite-derived sea ice variables.
format Article in Journal/Newspaper
author J. Stroeve
V. Nandan
R. Willatt
R. Dadic
P. Rostosky
M. Gallagher
R. Mallett
A. Barrett
S. Hendricks
R. Tonboe
M. McCrystall
M. Serreze
L. Thielke
G. Spreen
T. Newman
J. Yackel
R. Ricker
M. Tsamados
A. Macfarlane
H.-R. Hannula
M. Schneebeli
author_facet J. Stroeve
V. Nandan
R. Willatt
R. Dadic
P. Rostosky
M. Gallagher
R. Mallett
A. Barrett
S. Hendricks
R. Tonboe
M. McCrystall
M. Serreze
L. Thielke
G. Spreen
T. Newman
J. Yackel
R. Ricker
M. Tsamados
A. Macfarlane
H.-R. Hannula
M. Schneebeli
author_sort J. Stroeve
title Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
title_short Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
title_full Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
title_fullStr Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
title_full_unstemmed Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
title_sort rain on snow (ros) understudied in sea ice remote sensing: a multi-sensor analysis of ros during mosaic (multidisciplinary drifting observatory for the study of arctic climate)
publisher Copernicus Publications
publishDate 2022
url https://doi.org/10.5194/tc-16-4223-2022
https://doaj.org/article/103dfb3ad8c44f6ea39ca98a98ff9d2e
geographic Arctic
Arctic Ocean
geographic_facet Arctic
Arctic Ocean
genre Arctic
Arctic Ocean
Sea ice
The Cryosphere
genre_facet Arctic
Arctic Ocean
Sea ice
The Cryosphere
op_source The Cryosphere, Vol 16, Pp 4223-4250 (2022)
op_relation https://tc.copernicus.org/articles/16/4223/2022/tc-16-4223-2022.pdf
https://doaj.org/toc/1994-0416
https://doaj.org/toc/1994-0424
doi:10.5194/tc-16-4223-2022
1994-0416
1994-0424
https://doaj.org/article/103dfb3ad8c44f6ea39ca98a98ff9d2e
op_doi https://doi.org/10.5194/tc-16-4223-2022
container_title The Cryosphere
container_volume 16
container_issue 10
container_start_page 4223
op_container_end_page 4250
_version_ 1766323083392581632