Spatial distributions of soluble salts in surface snow of East Antarctica

To better understand how sea salt reacts in surface snow of Antarctica, we collected and identified non-volatile particles in surface snow along a traverse in East Antarctica. Samples were obtained during summer 2012/2013 from coastal to inland regions within 69°S to 80°S and 39°E to 45°E, a total d...

Full description

Bibliographic Details
Published in:Tellus B: Chemical and Physical Meteorology
Main Authors: Yoshinori Iizuka, Hiroshi Ohno, Ryu Uemura, Toshitaka Suzuki, Ikumi Oyabu, Yu Hoshina, Kotaro Fukui, Motohiro Hirabayashi, Hideaki Motoyama
Format: Article in Journal/Newspaper
Language:English
Published: Stockholm University Press 2016
Subjects:
Online Access:https://doi.org/10.3402/tellusb.v68.29285
https://doaj.org/article/0fae2350962440f8a5cd4dc86974409b
Description
Summary:To better understand how sea salt reacts in surface snow of Antarctica, we collected and identified non-volatile particles in surface snow along a traverse in East Antarctica. Samples were obtained during summer 2012/2013 from coastal to inland regions within 69°S to 80°S and 39°E to 45°E, a total distance exceeding 800 km. The spatial resolution of samples is about one sample per latitude between 1500 and 3800 m altitude. Here, we obtain the atomic ratios of Na, S and Cl, and calculate the masses of sodium sulphate and sodium chloride. The results show that, even in the coast snow sample (69°S), sea salt is highly modified by acid (HNO3 or H2SO4). The fraction of sea salt that reacts with acid increases in the region from 70°S to 74°S below 3000 m a.s.l., where some NaCl remains. At the higher altitudes (above 3300 m a.s.l.) in the inland region (74°S to 80°S), the reaction uses almost all of the available NaCl.