Diurnal variations in the UV albedo of arctic snow

The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV) albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natur...

Full description

Bibliographic Details
Main Authors: O. Meinander, A. Kontu, K. Lakkala, A. Heikkilä, L. Ylianttila, M. Toikka
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2008
Subjects:
Online Access:https://doaj.org/article/0e47453aa72e4e5c855de8d399bc5288
Description
Summary:The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV) albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67°22'N, 26°39'E, 179 m a.s.l.) during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period, and from 0.5 to 0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again.