Adsorption properties of the fumed individual and mixed Si, Ti and Al oxides as proxies for the Antarctic atmospheric mineral aerosols

The aim of the study is to determine the effects of structure and content of X, CX in the oxides X/SiO2 (X = Al2O3, TiO2, Al2O3/TiO2) on the surface characteristics. The low-temperature nitrogen adsorption isotherms on the surface of 12 individual and mixed fumed oxides of Si, Ti and Al, as proxies...

Full description

Bibliographic Details
Published in:Ukrainian Antarctic Journal
Main Authors: M. S. Bazylevska, V. I. Bogillo
Format: Article in Journal/Newspaper
Language:English
Ukrainian
Published: State Institution National Antarctic Scientific Center 2019
Subjects:
Online Access:https://doi.org/10.33275/1727-7485.1(18).2019.125
https://doaj.org/article/0bd27aa287c74da8994a3a6b75c1dfd3
id ftdoajarticles:oai:doaj.org/article:0bd27aa287c74da8994a3a6b75c1dfd3
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:0bd27aa287c74da8994a3a6b75c1dfd3 2023-05-15T13:32:58+02:00 Adsorption properties of the fumed individual and mixed Si, Ti and Al oxides as proxies for the Antarctic atmospheric mineral aerosols M. S. Bazylevska V. I. Bogillo 2019-12-01T00:00:00Z https://doi.org/10.33275/1727-7485.1(18).2019.125 https://doaj.org/article/0bd27aa287c74da8994a3a6b75c1dfd3 EN UK eng ukr State Institution National Antarctic Scientific Center http://uaj.uac.gov.ua/index.php/uaj/article/view/125 https://doaj.org/toc/1727-7485 https://doaj.org/toc/2415-3087 1727-7485 2415-3087 doi:10.33275/1727-7485.1(18).2019.125 https://doaj.org/article/0bd27aa287c74da8994a3a6b75c1dfd3 Український антарктичний журнал, Iss 1(18), Pp 3-17 (2019) mineral aerosols antarctic atmosphere fumed individual and mixed si ti and al oxides nitrogen adsorption Meteorology. Climatology QC851-999 Geophysics. Cosmic physics QC801-809 article 2019 ftdoajarticles https://doi.org/10.33275/1727-7485.1(18).2019.125 2022-12-30T23:46:57Z The aim of the study is to determine the effects of structure and content of X, CX in the oxides X/SiO2 (X = Al2O3, TiO2, Al2O3/TiO2) on the surface characteristics. The low-temperature nitrogen adsorption isotherms on the surface of 12 individual and mixed fumed oxides of Si, Ti and Al, as proxies for the Antarctic atmospheric mineral aerosols, were measured by volumetric method. The specific surface areas of the oxides, SBET were calculated by using the Brunauer–Emmett–Teller (BET) theory. The dependence between CX and SBET is not obeyed for the mixed oxides, which can be caused by effects of the reaction temperature of MCln (M = Si, Ti and Al) hydrolysis in the oxygen/hydrogen flame and by different concentration ratios of O2, H2 and MCln on the structural characteristics of the primary particles and their aggregates. The N2 adsorption energy distributions of the oxides surface were calculated by the regularization procedure. It was demonstrated that the surfaces are characterized by high energetic heterogeneity. Result. The Zero-Adsorption Isotherm (ZAI) approach was applied to describe the N2 adsorption in the whole range of its pressures. The ZAI derived in approximation of adsorbed vapor as a set of molecular clusters. The specific surface areas for the oxides, As, maximal numbers of the molecules in the adsorbed clusters, thicknesses of the adsorbed liquid film and the free surface energies of the oxides in the absence of adsorption, γS0, were calculated using the ZAI equations. The As correlates well with SBET and it measures 77.5% of the SBET. The γS0 increases as the N2 average adsorption energy grows. The dependence between γS0 and CX (taking into account γS0 for X) is not obeyed for the mixed oxides. The γS0 for SiO2, Al2O3 and TiO2 rises as the permittivity and the index of refraction increase. The γS0 is within the range of dispersive components of free surface energy, which is determined by other experimental methods and calculated using the Lifshitz’ theory. The obtained parameters allow ... Article in Journal/Newspaper Antarc* Antarctic Directory of Open Access Journals: DOAJ Articles Antarctic The Antarctic Ukrainian Antarctic Journal 1(18) 3 17
institution Open Polar
collection Directory of Open Access Journals: DOAJ Articles
op_collection_id ftdoajarticles
language English
Ukrainian
topic mineral aerosols
antarctic atmosphere
fumed individual and mixed si
ti and al oxides
nitrogen adsorption
Meteorology. Climatology
QC851-999
Geophysics. Cosmic physics
QC801-809
spellingShingle mineral aerosols
antarctic atmosphere
fumed individual and mixed si
ti and al oxides
nitrogen adsorption
Meteorology. Climatology
QC851-999
Geophysics. Cosmic physics
QC801-809
M. S. Bazylevska
V. I. Bogillo
Adsorption properties of the fumed individual and mixed Si, Ti and Al oxides as proxies for the Antarctic atmospheric mineral aerosols
topic_facet mineral aerosols
antarctic atmosphere
fumed individual and mixed si
ti and al oxides
nitrogen adsorption
Meteorology. Climatology
QC851-999
Geophysics. Cosmic physics
QC801-809
description The aim of the study is to determine the effects of structure and content of X, CX in the oxides X/SiO2 (X = Al2O3, TiO2, Al2O3/TiO2) on the surface characteristics. The low-temperature nitrogen adsorption isotherms on the surface of 12 individual and mixed fumed oxides of Si, Ti and Al, as proxies for the Antarctic atmospheric mineral aerosols, were measured by volumetric method. The specific surface areas of the oxides, SBET were calculated by using the Brunauer–Emmett–Teller (BET) theory. The dependence between CX and SBET is not obeyed for the mixed oxides, which can be caused by effects of the reaction temperature of MCln (M = Si, Ti and Al) hydrolysis in the oxygen/hydrogen flame and by different concentration ratios of O2, H2 and MCln on the structural characteristics of the primary particles and their aggregates. The N2 adsorption energy distributions of the oxides surface were calculated by the regularization procedure. It was demonstrated that the surfaces are characterized by high energetic heterogeneity. Result. The Zero-Adsorption Isotherm (ZAI) approach was applied to describe the N2 adsorption in the whole range of its pressures. The ZAI derived in approximation of adsorbed vapor as a set of molecular clusters. The specific surface areas for the oxides, As, maximal numbers of the molecules in the adsorbed clusters, thicknesses of the adsorbed liquid film and the free surface energies of the oxides in the absence of adsorption, γS0, were calculated using the ZAI equations. The As correlates well with SBET and it measures 77.5% of the SBET. The γS0 increases as the N2 average adsorption energy grows. The dependence between γS0 and CX (taking into account γS0 for X) is not obeyed for the mixed oxides. The γS0 for SiO2, Al2O3 and TiO2 rises as the permittivity and the index of refraction increase. The γS0 is within the range of dispersive components of free surface energy, which is determined by other experimental methods and calculated using the Lifshitz’ theory. The obtained parameters allow ...
format Article in Journal/Newspaper
author M. S. Bazylevska
V. I. Bogillo
author_facet M. S. Bazylevska
V. I. Bogillo
author_sort M. S. Bazylevska
title Adsorption properties of the fumed individual and mixed Si, Ti and Al oxides as proxies for the Antarctic atmospheric mineral aerosols
title_short Adsorption properties of the fumed individual and mixed Si, Ti and Al oxides as proxies for the Antarctic atmospheric mineral aerosols
title_full Adsorption properties of the fumed individual and mixed Si, Ti and Al oxides as proxies for the Antarctic atmospheric mineral aerosols
title_fullStr Adsorption properties of the fumed individual and mixed Si, Ti and Al oxides as proxies for the Antarctic atmospheric mineral aerosols
title_full_unstemmed Adsorption properties of the fumed individual and mixed Si, Ti and Al oxides as proxies for the Antarctic atmospheric mineral aerosols
title_sort adsorption properties of the fumed individual and mixed si, ti and al oxides as proxies for the antarctic atmospheric mineral aerosols
publisher State Institution National Antarctic Scientific Center
publishDate 2019
url https://doi.org/10.33275/1727-7485.1(18).2019.125
https://doaj.org/article/0bd27aa287c74da8994a3a6b75c1dfd3
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source Український антарктичний журнал, Iss 1(18), Pp 3-17 (2019)
op_relation http://uaj.uac.gov.ua/index.php/uaj/article/view/125
https://doaj.org/toc/1727-7485
https://doaj.org/toc/2415-3087
1727-7485
2415-3087
doi:10.33275/1727-7485.1(18).2019.125
https://doaj.org/article/0bd27aa287c74da8994a3a6b75c1dfd3
op_doi https://doi.org/10.33275/1727-7485.1(18).2019.125
container_title Ukrainian Antarctic Journal
container_issue 1(18)
container_start_page 3
op_container_end_page 17
_version_ 1766037306452475904