Demagnetizing the drill string magnetic interference in Far North and in Pakistan
Abstract Drilling in Barents Sea proves to be a challenging task, as this region is situated in auroral zones having high geomagnetic latitude, where magnetic interferences develop from magnetic field and magnetic materials inside subsurface are quite common. For this region, monitoring of magnetic...
Published in: | Journal of Petroleum Exploration and Production Technology |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
SpringerOpen
2019
|
Subjects: | |
Online Access: | https://doi.org/10.1007/s13202-019-00801-7 https://doaj.org/article/08d9ae9af13f4001b77cc2e48da6ca73 |
Summary: | Abstract Drilling in Barents Sea proves to be a challenging task, as this region is situated in auroral zones having high geomagnetic latitude, where magnetic interferences develop from magnetic field and magnetic materials inside subsurface are quite common. For this region, monitoring of magnetic field is utterly significant as any fluctuations can distort the tool sensor performance with ultimately enlarging the uncertainty in azimuth. To guide a well to its desire location, measurement while drilling (MWD) tool needs to be operated with utmost precision; however, its accuracy compromises as a result of magnetic interferences from drill string and nearby magnetic material. The performance of this tool depends upon its sensors. Any distortion in sensor performance can lead to problems such as multiple sidetracking and increase in overall project cost. Furthermore, the same BHA was also placed in a region of Pakistan and the impact drill string interference was observed. It was discovered that the interferences that had tremendous impact on magnetometer Z-component in Barents Sea had a drastic reduction in the region of Pakistan as it is situated in low latitude, where uncertainty in azimuth is low. In this work, an exemplary bottom-hole assembly (BHA) was analyzed and the impact of individual drill string components interferences was observed on the MWD sensors. It was perceived that the bit was responsible for creating the major distortion in MWD sensor. Apart from that, it was also investigated that the location of the well also plays a vital role in this distortion. This intervention in the sensors is created by a vast difference between the used actual length and the recommended length of nonmagnetic drill collar in the BHA. Numerically, it was investigated that if the physical distance between the sensors and bit is increased, then this interference is reduced. It was also apparent that the Z-component of the magnetometer was utterly distorted because of this interference, while the X- and Y-components ... |
---|