Simulation of Spatiotemporal Distribution and Variation of 30 m Resolution Permafrost in Northeast China from 2003 to 2021

The high-resolution permafrost distribution maps have a closer relationship with engineering applications in cold regions because they are more relative to the real situation compared with the traditional permafrost zoning mapping. A particle swarm optimization algorithm was used to obtain the index...

Full description

Bibliographic Details
Published in:Sustainability
Main Authors: Chengcheng Zhang, Wei Shan, Shuai Liu, Ying Guo, Lisha Qiu
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2023
Subjects:
Online Access:https://doi.org/10.3390/su151914610
https://doaj.org/article/07b4cb8c16084e6b995eae64c6bd0b57
Description
Summary:The high-resolution permafrost distribution maps have a closer relationship with engineering applications in cold regions because they are more relative to the real situation compared with the traditional permafrost zoning mapping. A particle swarm optimization algorithm was used to obtain the index η with 30 m resolution and to characterize the distribution probability of permafrost at the field scale. The index consists of five environmental variables: slope position, slope, deviation from mean elevation, topographic diversity, and soil bulk density. The downscaling process of the surface frost number from a resolution of 1000 m to 30 m is achieved by using the spatial weight decomposition method and index η. We established the regression statistical relationship between the surface frost number after downscaling and the temperature at the freezing layer that is below the permafrost active layer base. We simulated permafrost temperature distribution maps with 30 m resolution in the four periods of 2003–2007, 2008–2012, 2013–2017, and 2018–2021, and the permafrost area is, respectively, 28.35 × 10 4 km 2 , 35.14 × 10 4 km 2 , 28.96 × 10 4 km 2 , and 25.21 × 10 4 km 2 . The proportion of extremely stable permafrost (<−5.0 °C), stable permafrost (−3.0~−5.0 °C), sub-stable permafrost (−1.5~−3.0 °C), transitional permafrost (−0.5~−1.5 °C), and unstable permafrost (0~−0.5 °C) is 0.50–1.27%, 6.77–12.45%, 29.08–33.94%, 34.52–39.50%, and 19.87–26.79%, respectively, with sub-stable, transitional, and unstable permafrost mainly distributed. Direct and indirect verification shows that the permafrost temperature distribution maps after downscaling still have high reliability, with 83.2% of the residual controlled within the range of ±1 °C and the consistency ranges from 83.17% to 96.47%, with the identification of permafrost sections in the highway engineering geological investigation reports of six highway projects. The maps are of fundamental importance for engineering planning and design, ecosystem management, and ...