Fatty acid profile and biochemical properties of Dracocephalum palmatum Steph. ex Willd in extreme climate conditions

The composition of fatty acids in the general lipid balance of Dracocephalum palmatum Steph. Ex Willd that is found in extreme climatic conditions (Northern Pole of Cold) was researched by thinlayer and gas-liquid chromatography. This research aims to study the fatty acid profile of the perennial sp...

Full description

Bibliographic Details
Main Authors: Vasiliy V. Nokhsorov, Nadezhda К. Chirikova
Format: Article in Journal/Newspaper
Language:English
Published: Altai State University 2022
Subjects:
Online Access:https://doi.org/10.5281/zenodo.7749908
https://doaj.org/article/06ac753c267849e38ffc50ae23f37b34
Description
Summary:The composition of fatty acids in the general lipid balance of Dracocephalum palmatum Steph. Ex Willd that is found in extreme climatic conditions (Northern Pole of Cold) was researched by thinlayer and gas-liquid chromatography. This research aims to study the fatty acid profile of the perennial species Dracocephalum palmatum used as a medicinal herb in traditional medicine. We established that polyunsaturated fatty acids [FA], and more specifically linoleic and alpha-Linoleic acids, are prevalent in the lipidic constitution. The exceptional resilience of arctic and boreal plants is attributed to their flexible energy system that includes carbohydrates, proteins, and lipids. The latter are crucial in the energy balance of plants because they function as the main accumulator of spare energy and can create optimal conditions in cell membranes, unlike carbohydrates and proteins. Polyunsaturated fatty acids [PFA] present in the lipid layer allow the membranes to stay in the liquid state. Fat oxidation releases an amount of water that is considerably greater than that released by the combustion of carbohydrates and proteins. This research reveals that the fluidity of membranes in the arctic plant in question is optimal due to a high level of unsaturated lipids. The high amount of unsaturated FA in Dracocephalum palmatum lipids is attributed to the plant adapting to its poor growing conditions. We assume that late flowering plants with a higher than average level of PFA (linoleic and linolenic acids) higher than average play an important role in the conservation of reaction energy resources of animals in the northern environment.