Air‐Sea Turbulent Heat Flux Affects Oceanic Lateral Eddy Heat Transport

Abstract Sea surface temperature anomaly (SSTA) of ocean eddies induces an anomalous air‐sea turbulent heat flux that acts to dampen SSTA. A two‐dimensional SSTA model explores the effect of air‐sea turbulent heat flux, parameterized as SSTA damping, in shaping eddy SSTA patterns. Increased SSTA dam...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Weiguang Wu, Amala Mahadevan
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2024
Subjects:
Online Access:https://doi.org/10.1029/2024GL110459
https://doaj.org/article/026254985f414a829e7cbf4a072f6d52
_version_ 1821719739367424000
author Weiguang Wu
Amala Mahadevan
author_facet Weiguang Wu
Amala Mahadevan
author_sort Weiguang Wu
collection Directory of Open Access Journals: DOAJ Articles
container_issue 21
container_title Geophysical Research Letters
container_volume 51
description Abstract Sea surface temperature anomaly (SSTA) of ocean eddies induces an anomalous air‐sea turbulent heat flux that acts to dampen SSTA. A two‐dimensional SSTA model explores the effect of air‐sea turbulent heat flux, parameterized as SSTA damping, in shaping eddy SSTA patterns. Increased SSTA damping transitions the SSTA pattern from a monopole to dipole, indicating the balance between eddy stirring of the background SST gradient and SSTA damping. The SSTA dipole pattern increases the correlation of eddy velocity and SSTA, but SSTA damping weakens the SSTA, resulting in an optimal damping rate maximizing lateral eddy surface heat transport. Globally, the SSTA damping rate increases toward the equator. In mid‐latitude and high‐latitude regions (e.g., the Kuroshio, the Gulf Stream, and the Southern Ocean), eddy SSTAs are monopoles, while the tropics and subtropics exhibit dipole SSTA patterns due to higher damping rates, facilitating greater lateral eddy heat transport when the SSTA is large.
format Article in Journal/Newspaper
genre Southern Ocean
genre_facet Southern Ocean
geographic Southern Ocean
geographic_facet Southern Ocean
id ftdoajarticles:oai:doaj.org/article:026254985f414a829e7cbf4a072f6d52
institution Open Polar
language English
op_collection_id ftdoajarticles
op_doi https://doi.org/10.1029/2024GL110459
op_relation https://doi.org/10.1029/2024GL110459
https://doaj.org/toc/0094-8276
https://doaj.org/toc/1944-8007
doi:10.1029/2024GL110459
https://doaj.org/article/026254985f414a829e7cbf4a072f6d52
op_source Geophysical Research Letters, Vol 51, Iss 21, Pp n/a-n/a (2024)
publishDate 2024
publisher Wiley
record_format openpolar
spelling ftdoajarticles:oai:doaj.org/article:026254985f414a829e7cbf4a072f6d52 2025-01-17T00:56:28+00:00 Air‐Sea Turbulent Heat Flux Affects Oceanic Lateral Eddy Heat Transport Weiguang Wu Amala Mahadevan 2024-11-01T00:00:00Z https://doi.org/10.1029/2024GL110459 https://doaj.org/article/026254985f414a829e7cbf4a072f6d52 EN eng Wiley https://doi.org/10.1029/2024GL110459 https://doaj.org/toc/0094-8276 https://doaj.org/toc/1944-8007 doi:10.1029/2024GL110459 https://doaj.org/article/026254985f414a829e7cbf4a072f6d52 Geophysical Research Letters, Vol 51, Iss 21, Pp n/a-n/a (2024) mesoscale ocean eddy air‐sea interaction eddy heat transport eddy SST pattern Geophysics. Cosmic physics QC801-809 article 2024 ftdoajarticles https://doi.org/10.1029/2024GL110459 2025-01-08T03:10:06Z Abstract Sea surface temperature anomaly (SSTA) of ocean eddies induces an anomalous air‐sea turbulent heat flux that acts to dampen SSTA. A two‐dimensional SSTA model explores the effect of air‐sea turbulent heat flux, parameterized as SSTA damping, in shaping eddy SSTA patterns. Increased SSTA damping transitions the SSTA pattern from a monopole to dipole, indicating the balance between eddy stirring of the background SST gradient and SSTA damping. The SSTA dipole pattern increases the correlation of eddy velocity and SSTA, but SSTA damping weakens the SSTA, resulting in an optimal damping rate maximizing lateral eddy surface heat transport. Globally, the SSTA damping rate increases toward the equator. In mid‐latitude and high‐latitude regions (e.g., the Kuroshio, the Gulf Stream, and the Southern Ocean), eddy SSTAs are monopoles, while the tropics and subtropics exhibit dipole SSTA patterns due to higher damping rates, facilitating greater lateral eddy heat transport when the SSTA is large. Article in Journal/Newspaper Southern Ocean Directory of Open Access Journals: DOAJ Articles Southern Ocean Geophysical Research Letters 51 21
spellingShingle mesoscale ocean eddy
air‐sea interaction
eddy heat transport
eddy SST pattern
Geophysics. Cosmic physics
QC801-809
Weiguang Wu
Amala Mahadevan
Air‐Sea Turbulent Heat Flux Affects Oceanic Lateral Eddy Heat Transport
title Air‐Sea Turbulent Heat Flux Affects Oceanic Lateral Eddy Heat Transport
title_full Air‐Sea Turbulent Heat Flux Affects Oceanic Lateral Eddy Heat Transport
title_fullStr Air‐Sea Turbulent Heat Flux Affects Oceanic Lateral Eddy Heat Transport
title_full_unstemmed Air‐Sea Turbulent Heat Flux Affects Oceanic Lateral Eddy Heat Transport
title_short Air‐Sea Turbulent Heat Flux Affects Oceanic Lateral Eddy Heat Transport
title_sort air‐sea turbulent heat flux affects oceanic lateral eddy heat transport
topic mesoscale ocean eddy
air‐sea interaction
eddy heat transport
eddy SST pattern
Geophysics. Cosmic physics
QC801-809
topic_facet mesoscale ocean eddy
air‐sea interaction
eddy heat transport
eddy SST pattern
Geophysics. Cosmic physics
QC801-809
url https://doi.org/10.1029/2024GL110459
https://doaj.org/article/026254985f414a829e7cbf4a072f6d52