As the most prominent and complicated terrain on the globe, the Tibetan Plateau (TP) is often called the “Roof of the World”, “Third Pole” or “Asian Water Tower”. The energy and water cycles in the Third Pole have great impacts on the atmospheric circulation, Asian monsoon system and global climate...

Full description

Bibliographic Details
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:https://mdpi.com/books/pdfview/book/5407
id ftdoab:oai:directory.doabooks.org:20.500.12854/84424
record_format openpolar
spelling ftdoab:oai:directory.doabooks.org:20.500.12854/84424 2024-10-06T13:52:09+00:00 2022-06-21T08:35:05Z application/octet-stream https://mdpi.com/books/pdfview/book/5407 eng eng MDPI - Multidisciplinary Digital Publishing Institute ONIX_20220621_9783036539287_2 https://mdpi.com/books/pdfview/book/5407 2022 ftdoab 2024-09-06T05:23:02Z As the most prominent and complicated terrain on the globe, the Tibetan Plateau (TP) is often called the “Roof of the World”, “Third Pole” or “Asian Water Tower”. The energy and water cycles in the Third Pole have great impacts on the atmospheric circulation, Asian monsoon system and global climate change. On the other hand, the TP and the surrounding higher elevation area are also experiencing evident and rapid environmental changes under the background of global warming. As the headwater area of major rivers in Asia, the TP’s environmental changes—such as glacial retreat, snow melting, lake expanding and permafrost degradation—pose potential long-term threats to water resources of the local and surrounding regions. To promote quantitative understanding of energy and water cycles of the TP, several field campaigns, including GAME/Tibet, CAMP/Tibet and TORP, have been carried out. A large amount of data have been collected to gain a better understanding of the atmospheric boundary layer structure, turbulent heat fluxes and their coupling with atmospheric circulation and hydrological processes. The focus of this reprint is to present recent advances in quantifying land–atmosphere interactions, the water cycle and its components, energy balance components, climate change and hydrological feedbacks by in situ measurements, remote sensing or numerical modelling approaches in the “Third Pole” region. Other/Unknown Material permafrost Directory of Open Access Books (DOAB) Torp ENVELOPE(19.436,19.436,69.017,69.017) Tower The ENVELOPE(-58.479,-58.479,-62.215,-62.215)
institution Open Polar
collection Directory of Open Access Books (DOAB)
op_collection_id ftdoab
language English
description As the most prominent and complicated terrain on the globe, the Tibetan Plateau (TP) is often called the “Roof of the World”, “Third Pole” or “Asian Water Tower”. The energy and water cycles in the Third Pole have great impacts on the atmospheric circulation, Asian monsoon system and global climate change. On the other hand, the TP and the surrounding higher elevation area are also experiencing evident and rapid environmental changes under the background of global warming. As the headwater area of major rivers in Asia, the TP’s environmental changes—such as glacial retreat, snow melting, lake expanding and permafrost degradation—pose potential long-term threats to water resources of the local and surrounding regions. To promote quantitative understanding of energy and water cycles of the TP, several field campaigns, including GAME/Tibet, CAMP/Tibet and TORP, have been carried out. A large amount of data have been collected to gain a better understanding of the atmospheric boundary layer structure, turbulent heat fluxes and their coupling with atmospheric circulation and hydrological processes. The focus of this reprint is to present recent advances in quantifying land–atmosphere interactions, the water cycle and its components, energy balance components, climate change and hydrological feedbacks by in situ measurements, remote sensing or numerical modelling approaches in the “Third Pole” region.
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2022
url https://mdpi.com/books/pdfview/book/5407
long_lat ENVELOPE(19.436,19.436,69.017,69.017)
ENVELOPE(-58.479,-58.479,-62.215,-62.215)
geographic Torp
Tower The
geographic_facet Torp
Tower The
genre permafrost
genre_facet permafrost
op_relation ONIX_20220621_9783036539287_2
https://mdpi.com/books/pdfview/book/5407
_version_ 1812180478113873920