Atmospheric composition change: Climate–Chemistry interactions

Chemically active climate compounds are either primary compounds like methane (CH4), removed by oxidation in the atmosphere, or secondary compounds like ozone (O3), sulfate and organic aerosols, both formed and removed in the atmosphere. Man-induced climate–chemistry interaction is a two-way process...

Full description

Bibliographic Details
Published in:Atmospheric Environment
Main Authors: Isaksen, I.S.A., Granier, C., Myhre, G., Berntsen, T., Dalsøren, S. B., Gauss, M., Klimont, Z., Benestad, R., Bousquet, P., Collins, W.J., Cox, T., Eyring, Veronika, Fowler, D., Fuzzi, S., Jöckel, Patrick, Laj, P., Lohmann, U., Maione, M., Monks, P.S., Prevot, A.S.H., Raes, F., Richter, A., Rognerud, B., Schulz, M., Shindell, D.T., Stevenson, D.S., Storelvmo, T., Wang, W.-C., van Weele, M., Wild, M., Wuebbles, D.
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 2009
Subjects:
Online Access:https://elib.dlr.de/61072/
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VH3-4X1J78C-3&_user=100058&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000007338&_version=1&_urlVersion=0&_userid=100058&md5=f8664e7ca32bacfd0d376bae8794d8c7
_version_ 1835019936529907712
author Isaksen, I.S.A.
Granier, C.
Myhre, G.
Berntsen, T.
Dalsøren, S. B.
Gauss, M.
Klimont, Z.
Benestad, R.
Bousquet, P.
Collins, W.J.
Cox, T.
Eyring, Veronika
Fowler, D.
Fuzzi, S.
Jöckel, Patrick
Laj, P.
Lohmann, U.
Maione, M.
Monks, P.S.
Prevot, A.S.H.
Raes, F.
Richter, A.
Rognerud, B.
Schulz, M.
Shindell, D.T.
Stevenson, D.S.
Storelvmo, T.
Wang, W.-C.
van Weele, M.
Wild, M.
Wuebbles, D.
author_facet Isaksen, I.S.A.
Granier, C.
Myhre, G.
Berntsen, T.
Dalsøren, S. B.
Gauss, M.
Klimont, Z.
Benestad, R.
Bousquet, P.
Collins, W.J.
Cox, T.
Eyring, Veronika
Fowler, D.
Fuzzi, S.
Jöckel, Patrick
Laj, P.
Lohmann, U.
Maione, M.
Monks, P.S.
Prevot, A.S.H.
Raes, F.
Richter, A.
Rognerud, B.
Schulz, M.
Shindell, D.T.
Stevenson, D.S.
Storelvmo, T.
Wang, W.-C.
van Weele, M.
Wild, M.
Wuebbles, D.
author_sort Isaksen, I.S.A.
collection Unknown
container_issue 33
container_start_page 5138
container_title Atmospheric Environment
container_volume 43
description Chemically active climate compounds are either primary compounds like methane (CH4), removed by oxidation in the atmosphere, or secondary compounds like ozone (O3), sulfate and organic aerosols, both formed and removed in the atmosphere. Man-induced climate–chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate–chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds like O3 and the hydroxyl radical (OH). Reported studies represent both current andfuture changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds like O3, and of particles inducing both direct and indirect effects. Through EU projects like ACCENT, QUANTIFY, and the AeroCom project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric–tropospheric exchange of ozone, more frequent periods with stable conditions favoring pollution build up over industrial areas, enhanced temperature induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the ...
format Article in Journal/Newspaper
genre permafrost
genre_facet permafrost
id ftdlr:oai:elib.dlr.de:61072
institution Open Polar
language unknown
op_collection_id ftdlr
op_container_end_page 5192
op_doi https://doi.org/10.1016/j.atmosenv.2009.08.003
op_relation Isaksen, I.S.A. und Granier, C. und Myhre, G. und Berntsen, T. und Dalsøren, S. B. und Gauss, M. und Klimont, Z. und Benestad, R. und Bousquet, P. und Collins, W.J. und Cox, T. und Eyring, Veronika und Fowler, D. und Fuzzi, S. und Jöckel, Patrick und Laj, P. und Lohmann, U. und Maione, M. und Monks, P.S. und Prevot, A.S.H. und Raes, F. und Richter, A. und Rognerud, B. und Schulz, M. und Shindell, D.T. und Stevenson, D.S. und Storelvmo, T. und Wang, W.-C. und van Weele, M. und Wild, M. und Wuebbles, D. (2009) Atmospheric composition change: Climate–Chemistry interactions. Atmospheric Environment, 43, Seiten 5138-5192. Elsevier. doi:10.1016/j.atmosenv.2009.08.003 <https://doi.org/10.1016/j.atmosenv.2009.08.003>. ISSN 1352-2310.
publishDate 2009
publisher Elsevier
record_format openpolar
spelling ftdlr:oai:elib.dlr.de:61072 2025-06-15T14:46:56+00:00 Atmospheric composition change: Climate–Chemistry interactions Isaksen, I.S.A. Granier, C. Myhre, G. Berntsen, T. Dalsøren, S. B. Gauss, M. Klimont, Z. Benestad, R. Bousquet, P. Collins, W.J. Cox, T. Eyring, Veronika Fowler, D. Fuzzi, S. Jöckel, Patrick Laj, P. Lohmann, U. Maione, M. Monks, P.S. Prevot, A.S.H. Raes, F. Richter, A. Rognerud, B. Schulz, M. Shindell, D.T. Stevenson, D.S. Storelvmo, T. Wang, W.-C. van Weele, M. Wild, M. Wuebbles, D. 2009 https://elib.dlr.de/61072/ http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VH3-4X1J78C-3&_user=100058&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000007338&_version=1&_urlVersion=0&_userid=100058&md5=f8664e7ca32bacfd0d376bae8794d8c7 unknown Elsevier Isaksen, I.S.A. und Granier, C. und Myhre, G. und Berntsen, T. und Dalsøren, S. B. und Gauss, M. und Klimont, Z. und Benestad, R. und Bousquet, P. und Collins, W.J. und Cox, T. und Eyring, Veronika und Fowler, D. und Fuzzi, S. und Jöckel, Patrick und Laj, P. und Lohmann, U. und Maione, M. und Monks, P.S. und Prevot, A.S.H. und Raes, F. und Richter, A. und Rognerud, B. und Schulz, M. und Shindell, D.T. und Stevenson, D.S. und Storelvmo, T. und Wang, W.-C. und van Weele, M. und Wild, M. und Wuebbles, D. (2009) Atmospheric composition change: Climate–Chemistry interactions. Atmospheric Environment, 43, Seiten 5138-5192. Elsevier. doi:10.1016/j.atmosenv.2009.08.003 <https://doi.org/10.1016/j.atmosenv.2009.08.003>. ISSN 1352-2310. Dynamik der Atmosphäre Zeitschriftenbeitrag PeerReviewed 2009 ftdlr https://doi.org/10.1016/j.atmosenv.2009.08.003 2025-06-04T04:58:04Z Chemically active climate compounds are either primary compounds like methane (CH4), removed by oxidation in the atmosphere, or secondary compounds like ozone (O3), sulfate and organic aerosols, both formed and removed in the atmosphere. Man-induced climate–chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate–chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds like O3 and the hydroxyl radical (OH). Reported studies represent both current andfuture changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds like O3, and of particles inducing both direct and indirect effects. Through EU projects like ACCENT, QUANTIFY, and the AeroCom project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric–tropospheric exchange of ozone, more frequent periods with stable conditions favoring pollution build up over industrial areas, enhanced temperature induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the ... Article in Journal/Newspaper permafrost Unknown Atmospheric Environment 43 33 5138 5192
spellingShingle Dynamik der Atmosphäre
Isaksen, I.S.A.
Granier, C.
Myhre, G.
Berntsen, T.
Dalsøren, S. B.
Gauss, M.
Klimont, Z.
Benestad, R.
Bousquet, P.
Collins, W.J.
Cox, T.
Eyring, Veronika
Fowler, D.
Fuzzi, S.
Jöckel, Patrick
Laj, P.
Lohmann, U.
Maione, M.
Monks, P.S.
Prevot, A.S.H.
Raes, F.
Richter, A.
Rognerud, B.
Schulz, M.
Shindell, D.T.
Stevenson, D.S.
Storelvmo, T.
Wang, W.-C.
van Weele, M.
Wild, M.
Wuebbles, D.
Atmospheric composition change: Climate–Chemistry interactions
title Atmospheric composition change: Climate–Chemistry interactions
title_full Atmospheric composition change: Climate–Chemistry interactions
title_fullStr Atmospheric composition change: Climate–Chemistry interactions
title_full_unstemmed Atmospheric composition change: Climate–Chemistry interactions
title_short Atmospheric composition change: Climate–Chemistry interactions
title_sort atmospheric composition change: climate–chemistry interactions
topic Dynamik der Atmosphäre
topic_facet Dynamik der Atmosphäre
url https://elib.dlr.de/61072/
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VH3-4X1J78C-3&_user=100058&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000007338&_version=1&_urlVersion=0&_userid=100058&md5=f8664e7ca32bacfd0d376bae8794d8c7