Multimodel projections of stratospheric ozone in the 21st century

Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Eyring, V., Waugh, D.W., Bodeker, G.E., Cordero, E., Akiyoshi, H., Austin, J., Beagley, S.R., Boville, B., Braesicke, P., Brühl, C., Butchart, N., Chipperfield, M.P., Dameris, M., Deckert, R., Deushi, M., Frith, S.M., Garcia, R.R., Gettelman, A., Giorgetta, M., Kinnison, D.E., Mancini, E., Manzini, E., Marsh, D.R., Matthes, S., Nagashima, T., Newman, P.A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D.A., Rozanov, E., Schraner, M., Scinocca, J.F., Semeniuk, K., Shepherd, T.G., Shibata, K., Steil, B., Stolarski, R., Tian, W., Yoshiki, M.
Format: Other Non-Article Part of Journal/Newspaper
Language:unknown
Published: Wiley 2007
Subjects:
Online Access:http://elib.dlr.de/49632/
http://www.agu.org/journals/ABS/2007/2006JD008332.shtml
id ftdlr:oai:elib.dlr.de:49632
record_format openpolar
institution Open Polar
collection German Aerospace Center: elib - DLR electronic library
op_collection_id ftdlr
language unknown
topic Dynamik der Atmosphäre
spellingShingle Dynamik der Atmosphäre
Eyring, V.
Waugh, D.W.
Bodeker, G.E.
Cordero, E.
Akiyoshi, H.
Austin, J.
Beagley, S.R.
Boville, B.
Braesicke, P.
Brühl, C.
Butchart, N.
Chipperfield, M.P.
Dameris, M.
Deckert, R.
Deushi, M.
Frith, S.M.
Garcia, R.R.
Gettelman, A.
Giorgetta, M.
Kinnison, D.E.
Mancini, E.
Manzini, E.
Marsh, D.R.
Matthes, S.
Nagashima, T.
Newman, P.A.
Nielsen, J. E.
Pawson, S.
Pitari, G.
Plummer, D.A.
Rozanov, E.
Schraner, M.
Scinocca, J.F.
Semeniuk, K.
Shepherd, T.G.
Shibata, K.
Steil, B.
Stolarski, R.
Tian, W.
Yoshiki, M.
Multimodel projections of stratospheric ozone in the 21st century
topic_facet Dynamik der Atmosphäre
description Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global mean cooling of the stratosphere over the next 5 decades, increasing from around 0.25 K/decade at 50 hPa to around 1 K/ decade at 1 hPa under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. In general, the simulated ozone evolution is mainly determined by decreases in halogen concentrations and continued cooling of the global stratosphere due to increases in greenhouse gases (GHGs). Column ozone is projected to increase as stratospheric halogen concentrations return to 1980s levels. Because of ozone increases in the middle and upper stratosphere due to GHGinduced cooling, total ozone averaged over midlatitudes, outside the polar regions, and globally, is projected to increase to 1980 values between 2035 and 2050 and before lowerstratospheric halogen amounts decrease to 1980 values. In the polar regions the CCMs simulate small temperature trends in the first and second half of the 21st century in midwinter. Differences in stratospheric inorganic chlorine (Cly) among the CCMs are key to diagnosing the intermodel differences in simulated ozone recovery, in particular in the Antarctic. It is found that there are substantial quantitative differences in the simulated Cly, with the October mean Antarctic Cly peak value varying from less than 2 ppb to over 3.5 ppb in the CCMs, and the date at which the Cly returns to 1980 values varying from before 2030 to after 2050. There is a similar variation in the timing of recovery of Antarctic springtime column ozone back to 1980 values. As most models underestimate peak Cly near 2000, ozone recovery in the Antarctic could occur even later, between 2060 and 2070. In the Arctic the column ozone increase in spring does not follow halogen decreases as closely as in the Antarctic, reaching 1980 values before Arctic halogen amounts decrease
format Other Non-Article Part of Journal/Newspaper
author Eyring, V.
Waugh, D.W.
Bodeker, G.E.
Cordero, E.
Akiyoshi, H.
Austin, J.
Beagley, S.R.
Boville, B.
Braesicke, P.
Brühl, C.
Butchart, N.
Chipperfield, M.P.
Dameris, M.
Deckert, R.
Deushi, M.
Frith, S.M.
Garcia, R.R.
Gettelman, A.
Giorgetta, M.
Kinnison, D.E.
Mancini, E.
Manzini, E.
Marsh, D.R.
Matthes, S.
Nagashima, T.
Newman, P.A.
Nielsen, J. E.
Pawson, S.
Pitari, G.
Plummer, D.A.
Rozanov, E.
Schraner, M.
Scinocca, J.F.
Semeniuk, K.
Shepherd, T.G.
Shibata, K.
Steil, B.
Stolarski, R.
Tian, W.
Yoshiki, M.
author_facet Eyring, V.
Waugh, D.W.
Bodeker, G.E.
Cordero, E.
Akiyoshi, H.
Austin, J.
Beagley, S.R.
Boville, B.
Braesicke, P.
Brühl, C.
Butchart, N.
Chipperfield, M.P.
Dameris, M.
Deckert, R.
Deushi, M.
Frith, S.M.
Garcia, R.R.
Gettelman, A.
Giorgetta, M.
Kinnison, D.E.
Mancini, E.
Manzini, E.
Marsh, D.R.
Matthes, S.
Nagashima, T.
Newman, P.A.
Nielsen, J. E.
Pawson, S.
Pitari, G.
Plummer, D.A.
Rozanov, E.
Schraner, M.
Scinocca, J.F.
Semeniuk, K.
Shepherd, T.G.
Shibata, K.
Steil, B.
Stolarski, R.
Tian, W.
Yoshiki, M.
author_sort Eyring, V.
title Multimodel projections of stratospheric ozone in the 21st century
title_short Multimodel projections of stratospheric ozone in the 21st century
title_full Multimodel projections of stratospheric ozone in the 21st century
title_fullStr Multimodel projections of stratospheric ozone in the 21st century
title_full_unstemmed Multimodel projections of stratospheric ozone in the 21st century
title_sort multimodel projections of stratospheric ozone in the 21st century
publisher Wiley
publishDate 2007
url http://elib.dlr.de/49632/
http://www.agu.org/journals/ABS/2007/2006JD008332.shtml
long_lat ENVELOPE(139.931,139.931,-66.690,-66.690)
geographic Arctic
Antarctic
The Antarctic
Midwinter
geographic_facet Arctic
Antarctic
The Antarctic
Midwinter
genre Antarc*
Antarctic
Arctic
Climate change
genre_facet Antarc*
Antarctic
Arctic
Climate change
op_relation Eyring, V. und Waugh, D.W. und Bodeker, G.E. und Cordero, E. und Akiyoshi, H. und Austin, J. und Beagley, S.R. und Boville, B. und Braesicke, P. und Brühl, C. und Butchart, N. und Chipperfield, M.P. und Dameris, M. und Deckert, R. und Deushi, M. und Frith, S.M. und Garcia, R.R. und Gettelman, A. und Giorgetta, M. und Kinnison, D.E. und Mancini, E. und Manzini, E. und Marsh, D.R. und Matthes, S. und Nagashima, T. und Newman, P.A. und Nielsen, J. E. und Pawson, S. und Pitari, G. und Plummer, D.A. und Rozanov, E. und Schraner, M. und Scinocca, J.F. und Semeniuk, K. und Shepherd, T.G. und Shibata, K. und Steil, B. und Stolarski, R. und Tian, W. und Yoshiki, M. (2007) Multimodel projections of stratospheric ozone in the 21st century. Journal of Geophysical Research, 112 (D16303), Seiten 1-24. Wiley. DOI:10.1029/2006JD008332
op_doi https://doi.org/10.1029/2006JD008332
container_title Journal of Geophysical Research
container_volume 112
container_issue D16
_version_ 1766089945601015808
spelling ftdlr:oai:elib.dlr.de:49632 2023-05-15T13:37:16+02:00 Multimodel projections of stratospheric ozone in the 21st century Eyring, V. Waugh, D.W. Bodeker, G.E. Cordero, E. Akiyoshi, H. Austin, J. Beagley, S.R. Boville, B. Braesicke, P. Brühl, C. Butchart, N. Chipperfield, M.P. Dameris, M. Deckert, R. Deushi, M. Frith, S.M. Garcia, R.R. Gettelman, A. Giorgetta, M. Kinnison, D.E. Mancini, E. Manzini, E. Marsh, D.R. Matthes, S. Nagashima, T. Newman, P.A. Nielsen, J. E. Pawson, S. Pitari, G. Plummer, D.A. Rozanov, E. Schraner, M. Scinocca, J.F. Semeniuk, K. Shepherd, T.G. Shibata, K. Steil, B. Stolarski, R. Tian, W. Yoshiki, M. 2007 http://elib.dlr.de/49632/ http://www.agu.org/journals/ABS/2007/2006JD008332.shtml unknown Wiley Eyring, V. und Waugh, D.W. und Bodeker, G.E. und Cordero, E. und Akiyoshi, H. und Austin, J. und Beagley, S.R. und Boville, B. und Braesicke, P. und Brühl, C. und Butchart, N. und Chipperfield, M.P. und Dameris, M. und Deckert, R. und Deushi, M. und Frith, S.M. und Garcia, R.R. und Gettelman, A. und Giorgetta, M. und Kinnison, D.E. und Mancini, E. und Manzini, E. und Marsh, D.R. und Matthes, S. und Nagashima, T. und Newman, P.A. und Nielsen, J. E. und Pawson, S. und Pitari, G. und Plummer, D.A. und Rozanov, E. und Schraner, M. und Scinocca, J.F. und Semeniuk, K. und Shepherd, T.G. und Shibata, K. und Steil, B. und Stolarski, R. und Tian, W. und Yoshiki, M. (2007) Multimodel projections of stratospheric ozone in the 21st century. Journal of Geophysical Research, 112 (D16303), Seiten 1-24. Wiley. DOI:10.1029/2006JD008332 Dynamik der Atmosphäre Zeitschriftenbeitrag PeerReviewed 2007 ftdlr https://doi.org/10.1029/2006JD008332 2018-03-11T23:49:46Z Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global mean cooling of the stratosphere over the next 5 decades, increasing from around 0.25 K/decade at 50 hPa to around 1 K/ decade at 1 hPa under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. In general, the simulated ozone evolution is mainly determined by decreases in halogen concentrations and continued cooling of the global stratosphere due to increases in greenhouse gases (GHGs). Column ozone is projected to increase as stratospheric halogen concentrations return to 1980s levels. Because of ozone increases in the middle and upper stratosphere due to GHGinduced cooling, total ozone averaged over midlatitudes, outside the polar regions, and globally, is projected to increase to 1980 values between 2035 and 2050 and before lowerstratospheric halogen amounts decrease to 1980 values. In the polar regions the CCMs simulate small temperature trends in the first and second half of the 21st century in midwinter. Differences in stratospheric inorganic chlorine (Cly) among the CCMs are key to diagnosing the intermodel differences in simulated ozone recovery, in particular in the Antarctic. It is found that there are substantial quantitative differences in the simulated Cly, with the October mean Antarctic Cly peak value varying from less than 2 ppb to over 3.5 ppb in the CCMs, and the date at which the Cly returns to 1980 values varying from before 2030 to after 2050. There is a similar variation in the timing of recovery of Antarctic springtime column ozone back to 1980 values. As most models underestimate peak Cly near 2000, ozone recovery in the Antarctic could occur even later, between 2060 and 2070. In the Arctic the column ozone increase in spring does not follow halogen decreases as closely as in the Antarctic, reaching 1980 values before Arctic halogen amounts decrease Other Non-Article Part of Journal/Newspaper Antarc* Antarctic Arctic Climate change German Aerospace Center: elib - DLR electronic library Arctic Antarctic The Antarctic Midwinter ENVELOPE(139.931,139.931,-66.690,-66.690) Journal of Geophysical Research 112 D16