Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms
Accurate identification of grounding lines is of immense importance for estimating the mass budgets of ocean-terminating ice sheets and glaciers of Antarctica and Greenland. In Differential Interferometric SAR (DInSAR) interferograms, human experts still largely manually digitize grounding lines. Th...
Published in: | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium |
---|---|
Main Authors: | , , , |
Format: | Conference Object |
Language: | English |
Published: |
IEEE
2023
|
Subjects: | |
Online Access: | https://elib.dlr.de/199052/ https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf https://ieeexplore.ieee.org/document/10282372 |
_version_ | 1835019490156347392 |
---|---|
author | Ramanath Tarekere, Sindhu Krieger, Lukas Heidler, Konrad Floricioiu, Dana |
author_facet | Ramanath Tarekere, Sindhu Krieger, Lukas Heidler, Konrad Floricioiu, Dana |
author_sort | Ramanath Tarekere, Sindhu |
collection | Unknown |
container_start_page | 183 |
container_title | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium |
description | Accurate identification of grounding lines is of immense importance for estimating the mass budgets of ocean-terminating ice sheets and glaciers of Antarctica and Greenland. In Differential Interferometric SAR (DInSAR) interferograms, human experts still largely manually digitize grounding lines. The time-consuming nature of this task makes it infeasible to produce timely, continent-wide grounding line mappings. This study employed a Deep Neural Network (DNN) to automate delineation. The Holistically-Nested Edge Detection (HED) network was trained in a supervised manner on features derived from interferometric phase, elevation data, ice velocity, tidal amplitude, atmospheric pressure and corresponding manual delineations. HED-generated lines achieved a median deviation of 209 m with a median absolute deviation of 153 m from manual delineations. The developed automatic pipeline demonstrates the potential for generating spatially and temporally dense mappings of the grounding line. |
format | Conference Object |
genre | Antarc* Antarctica Greenland |
genre_facet | Antarc* Antarctica Greenland |
geographic | Greenland |
geographic_facet | Greenland |
id | ftdlr:oai:elib.dlr.de:199052 |
institution | Open Polar |
language | English |
op_collection_id | ftdlr |
op_container_end_page | 186 |
op_doi | https://doi.org/10.1109/IGARSS52108.2023.10282372 |
op_relation | https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf Ramanath Tarekere, Sindhu und Krieger, Lukas und Heidler, Konrad und Floricioiu, Dana (2023) Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 183-186. IEEE. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, California, USA. doi:10.1109/IGARSS52108.2023.10282372 <https://doi.org/10.1109/IGARSS52108.2023.10282372>. ISBN 979-8-3503-2010-7. ISSN 2153-7003. |
publishDate | 2023 |
publisher | IEEE |
record_format | openpolar |
spelling | ftdlr:oai:elib.dlr.de:199052 2025-06-15T14:10:06+00:00 Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms Ramanath Tarekere, Sindhu Krieger, Lukas Heidler, Konrad Floricioiu, Dana 2023-10-20 application/pdf https://elib.dlr.de/199052/ https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf https://ieeexplore.ieee.org/document/10282372 en eng IEEE https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf Ramanath Tarekere, Sindhu und Krieger, Lukas und Heidler, Konrad und Floricioiu, Dana (2023) Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 183-186. IEEE. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, California, USA. doi:10.1109/IGARSS52108.2023.10282372 <https://doi.org/10.1109/IGARSS52108.2023.10282372>. ISBN 979-8-3503-2010-7. ISSN 2153-7003. SAR-Signalverarbeitung Konferenzbeitrag PeerReviewed 2023 ftdlr https://doi.org/10.1109/IGARSS52108.2023.10282372 2025-06-04T04:58:07Z Accurate identification of grounding lines is of immense importance for estimating the mass budgets of ocean-terminating ice sheets and glaciers of Antarctica and Greenland. In Differential Interferometric SAR (DInSAR) interferograms, human experts still largely manually digitize grounding lines. The time-consuming nature of this task makes it infeasible to produce timely, continent-wide grounding line mappings. This study employed a Deep Neural Network (DNN) to automate delineation. The Holistically-Nested Edge Detection (HED) network was trained in a supervised manner on features derived from interferometric phase, elevation data, ice velocity, tidal amplitude, atmospheric pressure and corresponding manual delineations. HED-generated lines achieved a median deviation of 209 m with a median absolute deviation of 153 m from manual delineations. The developed automatic pipeline demonstrates the potential for generating spatially and temporally dense mappings of the grounding line. Conference Object Antarc* Antarctica Greenland Unknown Greenland IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium 183 186 |
spellingShingle | SAR-Signalverarbeitung Ramanath Tarekere, Sindhu Krieger, Lukas Heidler, Konrad Floricioiu, Dana Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms |
title | Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms |
title_full | Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms |
title_fullStr | Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms |
title_full_unstemmed | Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms |
title_short | Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms |
title_sort | deep neural network based automatic grounding line delineation in dinsar interferograms |
topic | SAR-Signalverarbeitung |
topic_facet | SAR-Signalverarbeitung |
url | https://elib.dlr.de/199052/ https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf https://ieeexplore.ieee.org/document/10282372 |