Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms

Accurate identification of grounding lines is of immense importance for estimating the mass budgets of ocean-terminating ice sheets and glaciers of Antarctica and Greenland. In Differential Interferometric SAR (DInSAR) interferograms, human experts still largely manually digitize grounding lines. Th...

Full description

Bibliographic Details
Published in:IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium
Main Authors: Ramanath Tarekere, Sindhu, Krieger, Lukas, Heidler, Konrad, Floricioiu, Dana
Format: Conference Object
Language:English
Published: IEEE 2023
Subjects:
Online Access:https://elib.dlr.de/199052/
https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf
https://ieeexplore.ieee.org/document/10282372
_version_ 1835019490156347392
author Ramanath Tarekere, Sindhu
Krieger, Lukas
Heidler, Konrad
Floricioiu, Dana
author_facet Ramanath Tarekere, Sindhu
Krieger, Lukas
Heidler, Konrad
Floricioiu, Dana
author_sort Ramanath Tarekere, Sindhu
collection Unknown
container_start_page 183
container_title IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium
description Accurate identification of grounding lines is of immense importance for estimating the mass budgets of ocean-terminating ice sheets and glaciers of Antarctica and Greenland. In Differential Interferometric SAR (DInSAR) interferograms, human experts still largely manually digitize grounding lines. The time-consuming nature of this task makes it infeasible to produce timely, continent-wide grounding line mappings. This study employed a Deep Neural Network (DNN) to automate delineation. The Holistically-Nested Edge Detection (HED) network was trained in a supervised manner on features derived from interferometric phase, elevation data, ice velocity, tidal amplitude, atmospheric pressure and corresponding manual delineations. HED-generated lines achieved a median deviation of 209 m with a median absolute deviation of 153 m from manual delineations. The developed automatic pipeline demonstrates the potential for generating spatially and temporally dense mappings of the grounding line.
format Conference Object
genre Antarc*
Antarctica
Greenland
genre_facet Antarc*
Antarctica
Greenland
geographic Greenland
geographic_facet Greenland
id ftdlr:oai:elib.dlr.de:199052
institution Open Polar
language English
op_collection_id ftdlr
op_container_end_page 186
op_doi https://doi.org/10.1109/IGARSS52108.2023.10282372
op_relation https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf
Ramanath Tarekere, Sindhu und Krieger, Lukas und Heidler, Konrad und Floricioiu, Dana (2023) Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 183-186. IEEE. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, California, USA. doi:10.1109/IGARSS52108.2023.10282372 <https://doi.org/10.1109/IGARSS52108.2023.10282372>. ISBN 979-8-3503-2010-7. ISSN 2153-7003.
publishDate 2023
publisher IEEE
record_format openpolar
spelling ftdlr:oai:elib.dlr.de:199052 2025-06-15T14:10:06+00:00 Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms Ramanath Tarekere, Sindhu Krieger, Lukas Heidler, Konrad Floricioiu, Dana 2023-10-20 application/pdf https://elib.dlr.de/199052/ https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf https://ieeexplore.ieee.org/document/10282372 en eng IEEE https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf Ramanath Tarekere, Sindhu und Krieger, Lukas und Heidler, Konrad und Floricioiu, Dana (2023) Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 183-186. IEEE. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, California, USA. doi:10.1109/IGARSS52108.2023.10282372 <https://doi.org/10.1109/IGARSS52108.2023.10282372>. ISBN 979-8-3503-2010-7. ISSN 2153-7003. SAR-Signalverarbeitung Konferenzbeitrag PeerReviewed 2023 ftdlr https://doi.org/10.1109/IGARSS52108.2023.10282372 2025-06-04T04:58:07Z Accurate identification of grounding lines is of immense importance for estimating the mass budgets of ocean-terminating ice sheets and glaciers of Antarctica and Greenland. In Differential Interferometric SAR (DInSAR) interferograms, human experts still largely manually digitize grounding lines. The time-consuming nature of this task makes it infeasible to produce timely, continent-wide grounding line mappings. This study employed a Deep Neural Network (DNN) to automate delineation. The Holistically-Nested Edge Detection (HED) network was trained in a supervised manner on features derived from interferometric phase, elevation data, ice velocity, tidal amplitude, atmospheric pressure and corresponding manual delineations. HED-generated lines achieved a median deviation of 209 m with a median absolute deviation of 153 m from manual delineations. The developed automatic pipeline demonstrates the potential for generating spatially and temporally dense mappings of the grounding line. Conference Object Antarc* Antarctica Greenland Unknown Greenland IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium 183 186
spellingShingle SAR-Signalverarbeitung
Ramanath Tarekere, Sindhu
Krieger, Lukas
Heidler, Konrad
Floricioiu, Dana
Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms
title Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms
title_full Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms
title_fullStr Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms
title_full_unstemmed Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms
title_short Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms
title_sort deep neural network based automatic grounding line delineation in dinsar interferograms
topic SAR-Signalverarbeitung
topic_facet SAR-Signalverarbeitung
url https://elib.dlr.de/199052/
https://elib.dlr.de/199052/1/Deep_Neural_Network_Based_Automatic_Grounding_Line_Delineation_In_Dinsar_Interferograms.pdf
https://ieeexplore.ieee.org/document/10282372