Aviation contrail climate effects in the North Atlantic from 2016 to 2021

Around 5 % of anthropogenic radiative forcing (RF) is attributed to aviation CO2 and non-CO2 impacts. This paper quantifies aviation emissions and contrail climate forcing in the North Atlantic, one of the world’s busiest air traffic corridors, over 5 years. Between 2016 and 2019, growth in CO2 (C3:...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Teoh, Roger, Schumann, Ulrich, Gryspeerdt, Edward, Shapiro, Marc, Molloy, Jarlath, Koudis, George S., Voigt, Christiane, Stettler, Marc E. J.
Format: Other Non-Article Part of Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://elib.dlr.de/188048/
https://elib.dlr.de/188048/1/Teoh_ACP2022_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf
https://elib.dlr.de/188048/2/Teoh_ACP2022_Supplement_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf
https://www.atmospheric-chemistry-and-physics.net/
id ftdlr:oai:elib.dlr.de:188048
record_format openpolar
spelling ftdlr:oai:elib.dlr.de:188048 2023-05-15T17:31:37+02:00 Aviation contrail climate effects in the North Atlantic from 2016 to 2021 Teoh, Roger Schumann, Ulrich Gryspeerdt, Edward Shapiro, Marc Molloy, Jarlath Koudis, George S. Voigt, Christiane Stettler, Marc E. J. 2022 application/pdf https://elib.dlr.de/188048/ https://elib.dlr.de/188048/1/Teoh_ACP2022_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf https://elib.dlr.de/188048/2/Teoh_ACP2022_Supplement_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf https://www.atmospheric-chemistry-and-physics.net/ en eng Copernicus Publications https://elib.dlr.de/188048/1/Teoh_ACP2022_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf https://elib.dlr.de/188048/2/Teoh_ACP2022_Supplement_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf Teoh, Roger und Schumann, Ulrich und Gryspeerdt, Edward und Shapiro, Marc und Molloy, Jarlath und Koudis, George S. und Voigt, Christiane und Stettler, Marc E. J. (2022) Aviation contrail climate effects in the North Atlantic from 2016 to 2021. Atmospheric Chemistry and Physics, 22, Seiten 10919-10935. Copernicus Publications. doi:10.5194/acp-22-10919-2022 <https://doi.org/10.5194/acp-22-10919-2022>. ISSN 1680-7316. cc_by CC-BY Institut für Physik der Atmosphäre Wolkenphysik Zeitschriftenbeitrag PeerReviewed 2022 ftdlr https://doi.org/10.5194/acp-22-10919-2022 2022-09-25T23:13:11Z Around 5 % of anthropogenic radiative forcing (RF) is attributed to aviation CO2 and non-CO2 impacts. This paper quantifies aviation emissions and contrail climate forcing in the North Atlantic, one of the world’s busiest air traffic corridors, over 5 years. Between 2016 and 2019, growth in CO2 (C3:13% yr-1) and nitrogen oxide emissions (C4:5 % yr-1) outpaced increases in flight distance (C3:05 % yr-1). Over the same period, the annual mean contrail cirrus net RF (204–280 mW m-2) showed significant inter-annual variability caused by variations in meteorology. Responses to COVID-19 caused significant reductions in flight distance travelled (-66%), CO2 emissions (-71%) and the contrail net RF (-66%) compared with the prior 1-year period. Around 12 % of all flights in this region cause 80 % of the annual contrail energy forcing, and the factors associated with strongly warming/cooling contrails include seasonal changes in meteorology and radiation, time of day, background cloud fields, and engine-specific non-volatile particulate matter (nvPM) emissions. Strongly warming contrails in this region are generally formed in wintertime, close to the tropopause, between 15:00 and 04:00 UTC, and above low-level clouds. The most strongly cooling contrails occur in the spring, in the upper troposphere, between 06:00 and 15:00 UTC, and without lower-level clouds. Uncertainty in the contrail cirrus net RF (216–238 mW m-2) arising from meteorology in 2019 is smaller than the inter-annual variability. The contrail RF estimates are most sensitive to the humidity fields, followed by nvPM emissions and aircraft mass assumptions. This longitudinal evaluation of aviation contrail impacts contributes a quantified understanding of inter-annual variability and informs strategies for contrail mitigation. Other Non-Article Part of Journal/Newspaper North Atlantic German Aerospace Center: elib - DLR electronic library Atmospheric Chemistry and Physics 22 16 10919 10935
institution Open Polar
collection German Aerospace Center: elib - DLR electronic library
op_collection_id ftdlr
language English
topic Institut für Physik der Atmosphäre
Wolkenphysik
spellingShingle Institut für Physik der Atmosphäre
Wolkenphysik
Teoh, Roger
Schumann, Ulrich
Gryspeerdt, Edward
Shapiro, Marc
Molloy, Jarlath
Koudis, George S.
Voigt, Christiane
Stettler, Marc E. J.
Aviation contrail climate effects in the North Atlantic from 2016 to 2021
topic_facet Institut für Physik der Atmosphäre
Wolkenphysik
description Around 5 % of anthropogenic radiative forcing (RF) is attributed to aviation CO2 and non-CO2 impacts. This paper quantifies aviation emissions and contrail climate forcing in the North Atlantic, one of the world’s busiest air traffic corridors, over 5 years. Between 2016 and 2019, growth in CO2 (C3:13% yr-1) and nitrogen oxide emissions (C4:5 % yr-1) outpaced increases in flight distance (C3:05 % yr-1). Over the same period, the annual mean contrail cirrus net RF (204–280 mW m-2) showed significant inter-annual variability caused by variations in meteorology. Responses to COVID-19 caused significant reductions in flight distance travelled (-66%), CO2 emissions (-71%) and the contrail net RF (-66%) compared with the prior 1-year period. Around 12 % of all flights in this region cause 80 % of the annual contrail energy forcing, and the factors associated with strongly warming/cooling contrails include seasonal changes in meteorology and radiation, time of day, background cloud fields, and engine-specific non-volatile particulate matter (nvPM) emissions. Strongly warming contrails in this region are generally formed in wintertime, close to the tropopause, between 15:00 and 04:00 UTC, and above low-level clouds. The most strongly cooling contrails occur in the spring, in the upper troposphere, between 06:00 and 15:00 UTC, and without lower-level clouds. Uncertainty in the contrail cirrus net RF (216–238 mW m-2) arising from meteorology in 2019 is smaller than the inter-annual variability. The contrail RF estimates are most sensitive to the humidity fields, followed by nvPM emissions and aircraft mass assumptions. This longitudinal evaluation of aviation contrail impacts contributes a quantified understanding of inter-annual variability and informs strategies for contrail mitigation.
format Other Non-Article Part of Journal/Newspaper
author Teoh, Roger
Schumann, Ulrich
Gryspeerdt, Edward
Shapiro, Marc
Molloy, Jarlath
Koudis, George S.
Voigt, Christiane
Stettler, Marc E. J.
author_facet Teoh, Roger
Schumann, Ulrich
Gryspeerdt, Edward
Shapiro, Marc
Molloy, Jarlath
Koudis, George S.
Voigt, Christiane
Stettler, Marc E. J.
author_sort Teoh, Roger
title Aviation contrail climate effects in the North Atlantic from 2016 to 2021
title_short Aviation contrail climate effects in the North Atlantic from 2016 to 2021
title_full Aviation contrail climate effects in the North Atlantic from 2016 to 2021
title_fullStr Aviation contrail climate effects in the North Atlantic from 2016 to 2021
title_full_unstemmed Aviation contrail climate effects in the North Atlantic from 2016 to 2021
title_sort aviation contrail climate effects in the north atlantic from 2016 to 2021
publisher Copernicus Publications
publishDate 2022
url https://elib.dlr.de/188048/
https://elib.dlr.de/188048/1/Teoh_ACP2022_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf
https://elib.dlr.de/188048/2/Teoh_ACP2022_Supplement_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf
https://www.atmospheric-chemistry-and-physics.net/
genre North Atlantic
genre_facet North Atlantic
op_relation https://elib.dlr.de/188048/1/Teoh_ACP2022_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf
https://elib.dlr.de/188048/2/Teoh_ACP2022_Supplement_Schumann_Gryspeerdt_Shapiro_Molloy_Koudis_Voigt_Stettler_North_Atlantic_ACP_2022.pdf
Teoh, Roger und Schumann, Ulrich und Gryspeerdt, Edward und Shapiro, Marc und Molloy, Jarlath und Koudis, George S. und Voigt, Christiane und Stettler, Marc E. J. (2022) Aviation contrail climate effects in the North Atlantic from 2016 to 2021. Atmospheric Chemistry and Physics, 22, Seiten 10919-10935. Copernicus Publications. doi:10.5194/acp-22-10919-2022 <https://doi.org/10.5194/acp-22-10919-2022>. ISSN 1680-7316.
op_rights cc_by
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/acp-22-10919-2022
container_title Atmospheric Chemistry and Physics
container_volume 22
container_issue 16
container_start_page 10919
op_container_end_page 10935
_version_ 1766129282374959104