Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning

The ARIANNA experiment is an Askaryan detector designed to record radio signals induced by neutrino interactions in the Antarctic ice. Because of the low neutrino flux at high energies (E$_{ν}$ > 10$^{16}$ eV), the physics output is limited by statistics. Hence, an increase in sensitivity signifi...

Full description

Bibliographic Details
Published in:Journal of Instrumentation
Main Authors: Anker, A., Baldi, P., Hallgren, A., Hallmann, S., Hanson, J. C., Klein, S. R., Kleinfelder, S. A., Lahmann, R., Liu, J., Magnuson, M., McAleer, S., Meyers, Zachary Samuel, Barwick, S. W., Nam, J., Nelles, A., Novikov, A., Paul, M. P., Persichilli, C., Plaisier, Ilse, Pyras, Lilly, Rice-Smith, R., Tatar, J., Beise, J., Wang, S. -H, Welling, C., Zhao, L., Arianna Collaboration, Besson, D. Z., Bouma, S., Cataldo, M., Chen, P., Gaswint, G., Glaser, C.
Format: Article in Journal/Newspaper
Language:English
Published: Inst. of Physics 2022
Subjects:
ice
Online Access:https://bib-pubdb1.desy.de/record/476018
https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22
id ftdesyvdb:oai:bib-pubdb1.desy.de:476018
record_format openpolar
spelling ftdesyvdb:oai:bib-pubdb1.desy.de:476018 2023-05-15T13:54:30+02:00 Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning Anker, A. Baldi, P. Hallgren, A. Hallmann, S. Hanson, J. C. Klein, S. R. Kleinfelder, S. A. Lahmann, R. Liu, J. Magnuson, M. McAleer, S. Meyers, Zachary Samuel Barwick, S. W. Nam, J. Nelles, A. Novikov, A. Paul, M. P. Persichilli, C. Plaisier, Ilse Pyras, Lilly Rice-Smith, R. Tatar, J. Beise, J. Wang, S. -H Welling, C. Zhao, L. Arianna Collaboration Besson, D. Z. Bouma, S. Cataldo, M. Chen, P. Gaswint, G. Glaser, C. DE 2022 https://bib-pubdb1.desy.de/record/476018 https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22 eng eng Inst. of Physics info:eu-repo/semantics/altIdentifier/arxiv/arXiv:2112.01031 info:eu-repo/semantics/altIdentifier/issn/1748-0221 info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/17/03/P03007 info:eu-repo/semantics/altIdentifier/wos/WOS:000775007900006 https://bib-pubdb1.desy.de/record/476018 https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22 info:eu-repo/semantics/closedAccess Journal of Instrumentation 17(03), P03007 (2022). doi:10.1088/1748-0221/17/03/P03007 info:eu-repo/classification/ddc/610 noise: thermal trigger: threshold energy: high neutrino: flux neutrino: interaction neutrino: atmosphere neutrino: UHE ARIANNA sensitivity cosmic radiation radio wave: detector statistics network fluctuation data acquisition time dependence electric field ANITA IceCube energy spectrum GZK effect satellite ice efficiency neural network Neutrino detectors Real-time monitoring Cherenkov detectors info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftdesyvdb https://doi.org/10.1088/1748-0221/17/03/P03007 2022-07-03T23:13:08Z The ARIANNA experiment is an Askaryan detector designed to record radio signals induced by neutrino interactions in the Antarctic ice. Because of the low neutrino flux at high energies (E$_{ν}$ > 10$^{16}$ eV), the physics output is limited by statistics. Hence, an increase in sensitivity significantly improves the interpretation of data and offers the ability to probe new parameter spaces. The amplitudes of the trigger threshold are limited by the rate of triggering on unavoidable thermal noise fluctuations. We present a real-time thermal noise rejection algorithm that enables the trigger thresholds to be lowered, which increases the sensitivity to neutrinos by up to a factor of two (depending on energy) compared to the current ARIANNA capabilities. A deep learning discriminator, based on a Convolutional Neural Network (CNN), is implemented to identify and remove thermal events in real time. We describe a CNN trained on MC data that runs on the current ARIANNA microcomputer and retains 95% of the neutrino signal at a thermal noise rejection factor of 10$^{5}$, compared to a template matching procedure which reaches only 10$^{2}$ for the same signal efficiency. Then the results are verified in a lab measurement by feeding in generated neutrino-like signal pulses and thermal noise directly into the ARIANNA data acquisition system. Lastly, the same CNN is used to classify cosmic-rays events to make sure they are not rejected. The network classified 102 out of 104 cosmic-ray events as signal. Article in Journal/Newspaper Antarc* Antarctic DESY Publication Database (PUBDB) Antarctic The Antarctic Journal of Instrumentation 17 03 P03007
institution Open Polar
collection DESY Publication Database (PUBDB)
op_collection_id ftdesyvdb
language English
topic info:eu-repo/classification/ddc/610
noise: thermal
trigger: threshold
energy: high
neutrino: flux
neutrino: interaction
neutrino: atmosphere
neutrino: UHE
ARIANNA
sensitivity
cosmic radiation
radio wave: detector
statistics
network
fluctuation
data acquisition
time dependence
electric field
ANITA
IceCube
energy spectrum
GZK effect
satellite
ice
efficiency
neural network
Neutrino detectors
Real-time monitoring
Cherenkov detectors
spellingShingle info:eu-repo/classification/ddc/610
noise: thermal
trigger: threshold
energy: high
neutrino: flux
neutrino: interaction
neutrino: atmosphere
neutrino: UHE
ARIANNA
sensitivity
cosmic radiation
radio wave: detector
statistics
network
fluctuation
data acquisition
time dependence
electric field
ANITA
IceCube
energy spectrum
GZK effect
satellite
ice
efficiency
neural network
Neutrino detectors
Real-time monitoring
Cherenkov detectors
Anker, A.
Baldi, P.
Hallgren, A.
Hallmann, S.
Hanson, J. C.
Klein, S. R.
Kleinfelder, S. A.
Lahmann, R.
Liu, J.
Magnuson, M.
McAleer, S.
Meyers, Zachary Samuel
Barwick, S. W.
Nam, J.
Nelles, A.
Novikov, A.
Paul, M. P.
Persichilli, C.
Plaisier, Ilse
Pyras, Lilly
Rice-Smith, R.
Tatar, J.
Beise, J.
Wang, S. -H
Welling, C.
Zhao, L.
Arianna Collaboration
Besson, D. Z.
Bouma, S.
Cataldo, M.
Chen, P.
Gaswint, G.
Glaser, C.
Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning
topic_facet info:eu-repo/classification/ddc/610
noise: thermal
trigger: threshold
energy: high
neutrino: flux
neutrino: interaction
neutrino: atmosphere
neutrino: UHE
ARIANNA
sensitivity
cosmic radiation
radio wave: detector
statistics
network
fluctuation
data acquisition
time dependence
electric field
ANITA
IceCube
energy spectrum
GZK effect
satellite
ice
efficiency
neural network
Neutrino detectors
Real-time monitoring
Cherenkov detectors
description The ARIANNA experiment is an Askaryan detector designed to record radio signals induced by neutrino interactions in the Antarctic ice. Because of the low neutrino flux at high energies (E$_{ν}$ > 10$^{16}$ eV), the physics output is limited by statistics. Hence, an increase in sensitivity significantly improves the interpretation of data and offers the ability to probe new parameter spaces. The amplitudes of the trigger threshold are limited by the rate of triggering on unavoidable thermal noise fluctuations. We present a real-time thermal noise rejection algorithm that enables the trigger thresholds to be lowered, which increases the sensitivity to neutrinos by up to a factor of two (depending on energy) compared to the current ARIANNA capabilities. A deep learning discriminator, based on a Convolutional Neural Network (CNN), is implemented to identify and remove thermal events in real time. We describe a CNN trained on MC data that runs on the current ARIANNA microcomputer and retains 95% of the neutrino signal at a thermal noise rejection factor of 10$^{5}$, compared to a template matching procedure which reaches only 10$^{2}$ for the same signal efficiency. Then the results are verified in a lab measurement by feeding in generated neutrino-like signal pulses and thermal noise directly into the ARIANNA data acquisition system. Lastly, the same CNN is used to classify cosmic-rays events to make sure they are not rejected. The network classified 102 out of 104 cosmic-ray events as signal.
format Article in Journal/Newspaper
author Anker, A.
Baldi, P.
Hallgren, A.
Hallmann, S.
Hanson, J. C.
Klein, S. R.
Kleinfelder, S. A.
Lahmann, R.
Liu, J.
Magnuson, M.
McAleer, S.
Meyers, Zachary Samuel
Barwick, S. W.
Nam, J.
Nelles, A.
Novikov, A.
Paul, M. P.
Persichilli, C.
Plaisier, Ilse
Pyras, Lilly
Rice-Smith, R.
Tatar, J.
Beise, J.
Wang, S. -H
Welling, C.
Zhao, L.
Arianna Collaboration
Besson, D. Z.
Bouma, S.
Cataldo, M.
Chen, P.
Gaswint, G.
Glaser, C.
author_facet Anker, A.
Baldi, P.
Hallgren, A.
Hallmann, S.
Hanson, J. C.
Klein, S. R.
Kleinfelder, S. A.
Lahmann, R.
Liu, J.
Magnuson, M.
McAleer, S.
Meyers, Zachary Samuel
Barwick, S. W.
Nam, J.
Nelles, A.
Novikov, A.
Paul, M. P.
Persichilli, C.
Plaisier, Ilse
Pyras, Lilly
Rice-Smith, R.
Tatar, J.
Beise, J.
Wang, S. -H
Welling, C.
Zhao, L.
Arianna Collaboration
Besson, D. Z.
Bouma, S.
Cataldo, M.
Chen, P.
Gaswint, G.
Glaser, C.
author_sort Anker, A.
title Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning
title_short Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning
title_full Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning
title_fullStr Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning
title_full_unstemmed Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning
title_sort improving sensitivity of the arianna detector by rejecting thermal noise with deep learning
publisher Inst. of Physics
publishDate 2022
url https://bib-pubdb1.desy.de/record/476018
https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22
op_coverage DE
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source Journal of Instrumentation 17(03), P03007 (2022). doi:10.1088/1748-0221/17/03/P03007
op_relation info:eu-repo/semantics/altIdentifier/arxiv/arXiv:2112.01031
info:eu-repo/semantics/altIdentifier/issn/1748-0221
info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/17/03/P03007
info:eu-repo/semantics/altIdentifier/wos/WOS:000775007900006
https://bib-pubdb1.desy.de/record/476018
https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22
op_rights info:eu-repo/semantics/closedAccess
op_doi https://doi.org/10.1088/1748-0221/17/03/P03007
container_title Journal of Instrumentation
container_volume 17
container_issue 03
container_start_page P03007
_version_ 1766260439351558144