Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning
The ARIANNA experiment is an Askaryan detector designed to record radio signals induced by neutrino interactions in the Antarctic ice. Because of the low neutrino flux at high energies (E$_{ν}$ > 10$^{16}$ eV), the physics output is limited by statistics. Hence, an increase in sensitivity signifi...
Published in: | Journal of Instrumentation |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Inst. of Physics
2022
|
Subjects: | |
Online Access: | https://bib-pubdb1.desy.de/record/476018 https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22 |
id |
ftdesyvdb:oai:bib-pubdb1.desy.de:476018 |
---|---|
record_format |
openpolar |
spelling |
ftdesyvdb:oai:bib-pubdb1.desy.de:476018 2023-05-15T13:54:30+02:00 Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning Anker, A. Baldi, P. Hallgren, A. Hallmann, S. Hanson, J. C. Klein, S. R. Kleinfelder, S. A. Lahmann, R. Liu, J. Magnuson, M. McAleer, S. Meyers, Zachary Samuel Barwick, S. W. Nam, J. Nelles, A. Novikov, A. Paul, M. P. Persichilli, C. Plaisier, Ilse Pyras, Lilly Rice-Smith, R. Tatar, J. Beise, J. Wang, S. -H Welling, C. Zhao, L. Arianna Collaboration Besson, D. Z. Bouma, S. Cataldo, M. Chen, P. Gaswint, G. Glaser, C. DE 2022 https://bib-pubdb1.desy.de/record/476018 https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22 eng eng Inst. of Physics info:eu-repo/semantics/altIdentifier/arxiv/arXiv:2112.01031 info:eu-repo/semantics/altIdentifier/issn/1748-0221 info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/17/03/P03007 info:eu-repo/semantics/altIdentifier/wos/WOS:000775007900006 https://bib-pubdb1.desy.de/record/476018 https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22 info:eu-repo/semantics/closedAccess Journal of Instrumentation 17(03), P03007 (2022). doi:10.1088/1748-0221/17/03/P03007 info:eu-repo/classification/ddc/610 noise: thermal trigger: threshold energy: high neutrino: flux neutrino: interaction neutrino: atmosphere neutrino: UHE ARIANNA sensitivity cosmic radiation radio wave: detector statistics network fluctuation data acquisition time dependence electric field ANITA IceCube energy spectrum GZK effect satellite ice efficiency neural network Neutrino detectors Real-time monitoring Cherenkov detectors info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftdesyvdb https://doi.org/10.1088/1748-0221/17/03/P03007 2022-07-03T23:13:08Z The ARIANNA experiment is an Askaryan detector designed to record radio signals induced by neutrino interactions in the Antarctic ice. Because of the low neutrino flux at high energies (E$_{ν}$ > 10$^{16}$ eV), the physics output is limited by statistics. Hence, an increase in sensitivity significantly improves the interpretation of data and offers the ability to probe new parameter spaces. The amplitudes of the trigger threshold are limited by the rate of triggering on unavoidable thermal noise fluctuations. We present a real-time thermal noise rejection algorithm that enables the trigger thresholds to be lowered, which increases the sensitivity to neutrinos by up to a factor of two (depending on energy) compared to the current ARIANNA capabilities. A deep learning discriminator, based on a Convolutional Neural Network (CNN), is implemented to identify and remove thermal events in real time. We describe a CNN trained on MC data that runs on the current ARIANNA microcomputer and retains 95% of the neutrino signal at a thermal noise rejection factor of 10$^{5}$, compared to a template matching procedure which reaches only 10$^{2}$ for the same signal efficiency. Then the results are verified in a lab measurement by feeding in generated neutrino-like signal pulses and thermal noise directly into the ARIANNA data acquisition system. Lastly, the same CNN is used to classify cosmic-rays events to make sure they are not rejected. The network classified 102 out of 104 cosmic-ray events as signal. Article in Journal/Newspaper Antarc* Antarctic DESY Publication Database (PUBDB) Antarctic The Antarctic Journal of Instrumentation 17 03 P03007 |
institution |
Open Polar |
collection |
DESY Publication Database (PUBDB) |
op_collection_id |
ftdesyvdb |
language |
English |
topic |
info:eu-repo/classification/ddc/610 noise: thermal trigger: threshold energy: high neutrino: flux neutrino: interaction neutrino: atmosphere neutrino: UHE ARIANNA sensitivity cosmic radiation radio wave: detector statistics network fluctuation data acquisition time dependence electric field ANITA IceCube energy spectrum GZK effect satellite ice efficiency neural network Neutrino detectors Real-time monitoring Cherenkov detectors |
spellingShingle |
info:eu-repo/classification/ddc/610 noise: thermal trigger: threshold energy: high neutrino: flux neutrino: interaction neutrino: atmosphere neutrino: UHE ARIANNA sensitivity cosmic radiation radio wave: detector statistics network fluctuation data acquisition time dependence electric field ANITA IceCube energy spectrum GZK effect satellite ice efficiency neural network Neutrino detectors Real-time monitoring Cherenkov detectors Anker, A. Baldi, P. Hallgren, A. Hallmann, S. Hanson, J. C. Klein, S. R. Kleinfelder, S. A. Lahmann, R. Liu, J. Magnuson, M. McAleer, S. Meyers, Zachary Samuel Barwick, S. W. Nam, J. Nelles, A. Novikov, A. Paul, M. P. Persichilli, C. Plaisier, Ilse Pyras, Lilly Rice-Smith, R. Tatar, J. Beise, J. Wang, S. -H Welling, C. Zhao, L. Arianna Collaboration Besson, D. Z. Bouma, S. Cataldo, M. Chen, P. Gaswint, G. Glaser, C. Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning |
topic_facet |
info:eu-repo/classification/ddc/610 noise: thermal trigger: threshold energy: high neutrino: flux neutrino: interaction neutrino: atmosphere neutrino: UHE ARIANNA sensitivity cosmic radiation radio wave: detector statistics network fluctuation data acquisition time dependence electric field ANITA IceCube energy spectrum GZK effect satellite ice efficiency neural network Neutrino detectors Real-time monitoring Cherenkov detectors |
description |
The ARIANNA experiment is an Askaryan detector designed to record radio signals induced by neutrino interactions in the Antarctic ice. Because of the low neutrino flux at high energies (E$_{ν}$ > 10$^{16}$ eV), the physics output is limited by statistics. Hence, an increase in sensitivity significantly improves the interpretation of data and offers the ability to probe new parameter spaces. The amplitudes of the trigger threshold are limited by the rate of triggering on unavoidable thermal noise fluctuations. We present a real-time thermal noise rejection algorithm that enables the trigger thresholds to be lowered, which increases the sensitivity to neutrinos by up to a factor of two (depending on energy) compared to the current ARIANNA capabilities. A deep learning discriminator, based on a Convolutional Neural Network (CNN), is implemented to identify and remove thermal events in real time. We describe a CNN trained on MC data that runs on the current ARIANNA microcomputer and retains 95% of the neutrino signal at a thermal noise rejection factor of 10$^{5}$, compared to a template matching procedure which reaches only 10$^{2}$ for the same signal efficiency. Then the results are verified in a lab measurement by feeding in generated neutrino-like signal pulses and thermal noise directly into the ARIANNA data acquisition system. Lastly, the same CNN is used to classify cosmic-rays events to make sure they are not rejected. The network classified 102 out of 104 cosmic-ray events as signal. |
format |
Article in Journal/Newspaper |
author |
Anker, A. Baldi, P. Hallgren, A. Hallmann, S. Hanson, J. C. Klein, S. R. Kleinfelder, S. A. Lahmann, R. Liu, J. Magnuson, M. McAleer, S. Meyers, Zachary Samuel Barwick, S. W. Nam, J. Nelles, A. Novikov, A. Paul, M. P. Persichilli, C. Plaisier, Ilse Pyras, Lilly Rice-Smith, R. Tatar, J. Beise, J. Wang, S. -H Welling, C. Zhao, L. Arianna Collaboration Besson, D. Z. Bouma, S. Cataldo, M. Chen, P. Gaswint, G. Glaser, C. |
author_facet |
Anker, A. Baldi, P. Hallgren, A. Hallmann, S. Hanson, J. C. Klein, S. R. Kleinfelder, S. A. Lahmann, R. Liu, J. Magnuson, M. McAleer, S. Meyers, Zachary Samuel Barwick, S. W. Nam, J. Nelles, A. Novikov, A. Paul, M. P. Persichilli, C. Plaisier, Ilse Pyras, Lilly Rice-Smith, R. Tatar, J. Beise, J. Wang, S. -H Welling, C. Zhao, L. Arianna Collaboration Besson, D. Z. Bouma, S. Cataldo, M. Chen, P. Gaswint, G. Glaser, C. |
author_sort |
Anker, A. |
title |
Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning |
title_short |
Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning |
title_full |
Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning |
title_fullStr |
Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning |
title_full_unstemmed |
Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning |
title_sort |
improving sensitivity of the arianna detector by rejecting thermal noise with deep learning |
publisher |
Inst. of Physics |
publishDate |
2022 |
url |
https://bib-pubdb1.desy.de/record/476018 https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22 |
op_coverage |
DE |
geographic |
Antarctic The Antarctic |
geographic_facet |
Antarctic The Antarctic |
genre |
Antarc* Antarctic |
genre_facet |
Antarc* Antarctic |
op_source |
Journal of Instrumentation 17(03), P03007 (2022). doi:10.1088/1748-0221/17/03/P03007 |
op_relation |
info:eu-repo/semantics/altIdentifier/arxiv/arXiv:2112.01031 info:eu-repo/semantics/altIdentifier/issn/1748-0221 info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/17/03/P03007 info:eu-repo/semantics/altIdentifier/wos/WOS:000775007900006 https://bib-pubdb1.desy.de/record/476018 https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2022-01559%22 |
op_rights |
info:eu-repo/semantics/closedAccess |
op_doi |
https://doi.org/10.1088/1748-0221/17/03/P03007 |
container_title |
Journal of Instrumentation |
container_volume |
17 |
container_issue |
03 |
container_start_page |
P03007 |
_version_ |
1766260439351558144 |