IceCube-Gen2: The Window to the Extreme Universe

The observation of electromagnetic radiation from radio to γ-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (1015 eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most...

Full description

Bibliographic Details
Published in:Journal of Physics G: Nuclear and Particle Physics
Main Authors: Aartsen, M. G., Abbasi, R., Andeen, K., Fahey, S., Farrag, K., Fazely, A. R., Felde, J., Fienberg, A. T., Filimonov, K., Finley, C., Fischer, L., Fox, D., Franckowiak, A., Anderson, T., Friedman, E., Fritz, A., Gaisser, T. K., Gallagher, J., Ganster, E., Garcia-Fernandez, D., Garrappa, Simone, Gartner, A., Gerhardt, L., Gernhaeuser, R., Ansseau, I., Ghadimi, A., Glaser, C., Glauch, T., Glüsenkamp, T., Goldschmidt, A., Gonzalez, J. G., Goswami, S., Grant, D., Grégoire, T., Griffith, Z., Anton, G., Griswold, S., Gündüz, M., Haack, C., Hallgren, A., Halliday, R., Halve, L., Halzen, F., Hanson, J. C., Hanson, K., Hardin, J., Argüelles, C., Haugen, J., Haungs, A., Hauser, S.
Format: Article in Journal/Newspaper
Language:English
Published: IOP Publ. 2021
Subjects:
Online Access:https://bib-pubdb1.desy.de/record/458214
https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2021-02198%22
id ftdesyvdb:oai:bib-pubdb1.desy.de:458214
record_format openpolar
spelling ftdesyvdb:oai:bib-pubdb1.desy.de:458214 2023-05-15T18:23:20+02:00 IceCube-Gen2: The Window to the Extreme Universe Aartsen, M. G. Abbasi, R. Andeen, K. Fahey, S. Farrag, K. Fazely, A. R. Felde, J. Fienberg, A. T. Filimonov, K. Finley, C. Fischer, L. Fox, D. Franckowiak, A. Anderson, T. Friedman, E. Fritz, A. Gaisser, T. K. Gallagher, J. Ganster, E. Garcia-Fernandez, D. Garrappa, Simone Gartner, A. Gerhardt, L. Gernhaeuser, R. Ansseau, I. Ghadimi, A. Glaser, C. Glauch, T. Glüsenkamp, T. Goldschmidt, A. Gonzalez, J. G. Goswami, S. Grant, D. Grégoire, T. Griffith, Z. Anton, G. Griswold, S. Gündüz, M. Haack, C. Hallgren, A. Halliday, R. Halve, L. Halzen, F. Hanson, J. C. Hanson, K. Hardin, J. Argüelles, C. Haugen, J. Haungs, A. Hauser, S. DE 2021 https://bib-pubdb1.desy.de/record/458214 https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2021-02198%22 eng eng IOP Publ. info:eu-repo/semantics/altIdentifier/issn/0305-4616 info:eu-repo/semantics/altIdentifier/issn/0954-3899 info:eu-repo/semantics/altIdentifier/issn/1361-6471 info:eu-repo/semantics/altIdentifier/issn/2057-763X info:eu-repo/semantics/altIdentifier/arxiv/arXiv:2008.04323 info:eu-repo/semantics/altIdentifier/wos/WOS:000645585200001 info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6471/abbd48 https://bib-pubdb1.desy.de/record/458214 https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2021-02198%22 info:eu-repo/semantics/closedAccess Journal of physics / G 48(6), 060501 (2021). doi:10.1088/1361-6471/abbd48 info:eu-repo/classification/ddc/530 particle: energy gravitation: energy radiation: electromagnetic particle: acceleration IceCube gravitational radiation detector cosmic radiation neutron star propagation black hole gamma ray radio wave messenger photon costs info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftdesyvdb https://doi.org/10.1088/1361-6471/abbd48 2022-07-03T23:12:53Z The observation of electromagnetic radiation from radio to γ-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (1015 eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles have millions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to: (a) Resolve the high-energy neutrino sky from TeV to EeV energies (b) Investigate cosmic particle acceleration through multi-messenger observations (c) Reveal the sources and propagation of the highest energy particles in the Universe (d) Probe fundamental physics with high-energy neutrinos IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by ... Article in Journal/Newspaper South pole DESY Publication Database (PUBDB) South Pole Journal of Physics G: Nuclear and Particle Physics 48 6 060501
institution Open Polar
collection DESY Publication Database (PUBDB)
op_collection_id ftdesyvdb
language English
topic info:eu-repo/classification/ddc/530
particle: energy
gravitation: energy
radiation: electromagnetic
particle: acceleration
IceCube
gravitational radiation detector
cosmic radiation
neutron star
propagation
black hole
gamma ray
radio wave
messenger
photon
costs
spellingShingle info:eu-repo/classification/ddc/530
particle: energy
gravitation: energy
radiation: electromagnetic
particle: acceleration
IceCube
gravitational radiation detector
cosmic radiation
neutron star
propagation
black hole
gamma ray
radio wave
messenger
photon
costs
Aartsen, M. G.
Abbasi, R.
Andeen, K.
Fahey, S.
Farrag, K.
Fazely, A. R.
Felde, J.
Fienberg, A. T.
Filimonov, K.
Finley, C.
Fischer, L.
Fox, D.
Franckowiak, A.
Anderson, T.
Friedman, E.
Fritz, A.
Gaisser, T. K.
Gallagher, J.
Ganster, E.
Garcia-Fernandez, D.
Garrappa, Simone
Gartner, A.
Gerhardt, L.
Gernhaeuser, R.
Ansseau, I.
Ghadimi, A.
Glaser, C.
Glauch, T.
Glüsenkamp, T.
Goldschmidt, A.
Gonzalez, J. G.
Goswami, S.
Grant, D.
Grégoire, T.
Griffith, Z.
Anton, G.
Griswold, S.
Gündüz, M.
Haack, C.
Hallgren, A.
Halliday, R.
Halve, L.
Halzen, F.
Hanson, J. C.
Hanson, K.
Hardin, J.
Argüelles, C.
Haugen, J.
Haungs, A.
Hauser, S.
IceCube-Gen2: The Window to the Extreme Universe
topic_facet info:eu-repo/classification/ddc/530
particle: energy
gravitation: energy
radiation: electromagnetic
particle: acceleration
IceCube
gravitational radiation detector
cosmic radiation
neutron star
propagation
black hole
gamma ray
radio wave
messenger
photon
costs
description The observation of electromagnetic radiation from radio to γ-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (1015 eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles have millions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to: (a) Resolve the high-energy neutrino sky from TeV to EeV energies (b) Investigate cosmic particle acceleration through multi-messenger observations (c) Reveal the sources and propagation of the highest energy particles in the Universe (d) Probe fundamental physics with high-energy neutrinos IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by ...
format Article in Journal/Newspaper
author Aartsen, M. G.
Abbasi, R.
Andeen, K.
Fahey, S.
Farrag, K.
Fazely, A. R.
Felde, J.
Fienberg, A. T.
Filimonov, K.
Finley, C.
Fischer, L.
Fox, D.
Franckowiak, A.
Anderson, T.
Friedman, E.
Fritz, A.
Gaisser, T. K.
Gallagher, J.
Ganster, E.
Garcia-Fernandez, D.
Garrappa, Simone
Gartner, A.
Gerhardt, L.
Gernhaeuser, R.
Ansseau, I.
Ghadimi, A.
Glaser, C.
Glauch, T.
Glüsenkamp, T.
Goldschmidt, A.
Gonzalez, J. G.
Goswami, S.
Grant, D.
Grégoire, T.
Griffith, Z.
Anton, G.
Griswold, S.
Gündüz, M.
Haack, C.
Hallgren, A.
Halliday, R.
Halve, L.
Halzen, F.
Hanson, J. C.
Hanson, K.
Hardin, J.
Argüelles, C.
Haugen, J.
Haungs, A.
Hauser, S.
author_facet Aartsen, M. G.
Abbasi, R.
Andeen, K.
Fahey, S.
Farrag, K.
Fazely, A. R.
Felde, J.
Fienberg, A. T.
Filimonov, K.
Finley, C.
Fischer, L.
Fox, D.
Franckowiak, A.
Anderson, T.
Friedman, E.
Fritz, A.
Gaisser, T. K.
Gallagher, J.
Ganster, E.
Garcia-Fernandez, D.
Garrappa, Simone
Gartner, A.
Gerhardt, L.
Gernhaeuser, R.
Ansseau, I.
Ghadimi, A.
Glaser, C.
Glauch, T.
Glüsenkamp, T.
Goldschmidt, A.
Gonzalez, J. G.
Goswami, S.
Grant, D.
Grégoire, T.
Griffith, Z.
Anton, G.
Griswold, S.
Gündüz, M.
Haack, C.
Hallgren, A.
Halliday, R.
Halve, L.
Halzen, F.
Hanson, J. C.
Hanson, K.
Hardin, J.
Argüelles, C.
Haugen, J.
Haungs, A.
Hauser, S.
author_sort Aartsen, M. G.
title IceCube-Gen2: The Window to the Extreme Universe
title_short IceCube-Gen2: The Window to the Extreme Universe
title_full IceCube-Gen2: The Window to the Extreme Universe
title_fullStr IceCube-Gen2: The Window to the Extreme Universe
title_full_unstemmed IceCube-Gen2: The Window to the Extreme Universe
title_sort icecube-gen2: the window to the extreme universe
publisher IOP Publ.
publishDate 2021
url https://bib-pubdb1.desy.de/record/458214
https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2021-02198%22
op_coverage DE
geographic South Pole
geographic_facet South Pole
genre South pole
genre_facet South pole
op_source Journal of physics / G 48(6), 060501 (2021). doi:10.1088/1361-6471/abbd48
op_relation info:eu-repo/semantics/altIdentifier/issn/0305-4616
info:eu-repo/semantics/altIdentifier/issn/0954-3899
info:eu-repo/semantics/altIdentifier/issn/1361-6471
info:eu-repo/semantics/altIdentifier/issn/2057-763X
info:eu-repo/semantics/altIdentifier/arxiv/arXiv:2008.04323
info:eu-repo/semantics/altIdentifier/wos/WOS:000645585200001
info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6471/abbd48
https://bib-pubdb1.desy.de/record/458214
https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2021-02198%22
op_rights info:eu-repo/semantics/closedAccess
op_doi https://doi.org/10.1088/1361-6471/abbd48
container_title Journal of Physics G: Nuclear and Particle Physics
container_volume 48
container_issue 6
container_start_page 060501
_version_ 1766202915520774144