Replication Data for: Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin.

The data includes two high-resolution P-Cable 3D seismic datasets processed in 2016 from Storfjordrenna, Barents Sea, used in the article published by G-Cubed "Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin." by "Waage et al. The processi...

Full description

Bibliographic Details
Main Author: Waage, Malin
Language:English
Published: DataverseNO
Subjects:
Online Access:https://doi.org/10.18710/YWQZYV
id ftdataverseno:doi:10.18710/YWQZYV
record_format openpolar
spelling ftdataverseno:doi:10.18710/YWQZYV 2023-05-15T15:18:23+02:00 Replication Data for: Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin. Waage, Malin Waage, Malin https://doi.org/10.18710/YWQZYV English eng DataverseNO https://doi.org/10.18710/YWQZYV Earth and Environmental Sciences Seismic Fluid flow Gas hydrate pingos Hornsund Fault Zone Barents Sea ftdataverseno https://doi.org/10.18710/YWQZYV 2021-10-27T22:42:49Z The data includes two high-resolution P-Cable 3D seismic datasets processed in 2016 from Storfjordrenna, Barents Sea, used in the article published by G-Cubed "Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin." by "Waage et al. The processing flow is listed in the "Readme" document, as well as the format for importing the cubes into a interpretation software. Abstract: In 2014, the discovery of seafloor mounds leaking methane gas into the water column in the northwestern Barents Sea became the first to document the existence of non-permafrost related gas hydrate pingos (GHP) on the Eurasian Arctic shelf. The discovered site is given attention because the gas hydrates occur close to the upper limit of the gas hydrate stability, thus may be vulnerable to climatic forcing. In addition, this site lies on the regional Hornsund Fault Zone marking a transition between the oceanic and continental crust. The Hornsund Fault Zone is known to coincide with an extensive seafloor gas seepage area; however, until now lack of seismic data prevented connecting deep structural elements to shallow seepages. Here we use high-resolution P-Cable 3D seismic data to study the subsurface architecture of GHPs and underlying glacial and pre-glacial deposits. The data show gas hydrates, authigenic carbonates and free gas within the GHPs on top of gas chimneys piercing a thin section of low-permeability glacial-sediments. The chimneys connect to faults within the underlying tilted and folded fluid and gas hydrate bearing sedimentary rocks. Correlation of our data with regional 2D seismic surveys shows a spatial connection between the shallow subsurface fluid flow system and the deep-seated regional fault zone. We suggest that fault-controlled Paleocene hydrocarbon reservoirs inject methane into the low-permeability glacial deposits and near-seabed sediments, forming the GHPs. This conceptual model explains the existence of climate sensitive gas hydrate inventories and extensive seabed methane release observed along the Svalbard-Barents Sea margin. Other/Unknown Material Arctic Barents Sea Hornsund permafrost Storfjordrenna Svalbard DataverseNO Arctic Svalbard Barents Sea Hornsund ENVELOPE(15.865,15.865,76.979,76.979) Storfjordrenna ENVELOPE(17.000,17.000,76.000,76.000)
institution Open Polar
collection DataverseNO
op_collection_id ftdataverseno
language English
topic Earth and Environmental Sciences
Seismic
Fluid flow
Gas hydrate pingos
Hornsund Fault Zone
Barents Sea
spellingShingle Earth and Environmental Sciences
Seismic
Fluid flow
Gas hydrate pingos
Hornsund Fault Zone
Barents Sea
Waage, Malin
Replication Data for: Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin.
topic_facet Earth and Environmental Sciences
Seismic
Fluid flow
Gas hydrate pingos
Hornsund Fault Zone
Barents Sea
description The data includes two high-resolution P-Cable 3D seismic datasets processed in 2016 from Storfjordrenna, Barents Sea, used in the article published by G-Cubed "Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin." by "Waage et al. The processing flow is listed in the "Readme" document, as well as the format for importing the cubes into a interpretation software. Abstract: In 2014, the discovery of seafloor mounds leaking methane gas into the water column in the northwestern Barents Sea became the first to document the existence of non-permafrost related gas hydrate pingos (GHP) on the Eurasian Arctic shelf. The discovered site is given attention because the gas hydrates occur close to the upper limit of the gas hydrate stability, thus may be vulnerable to climatic forcing. In addition, this site lies on the regional Hornsund Fault Zone marking a transition between the oceanic and continental crust. The Hornsund Fault Zone is known to coincide with an extensive seafloor gas seepage area; however, until now lack of seismic data prevented connecting deep structural elements to shallow seepages. Here we use high-resolution P-Cable 3D seismic data to study the subsurface architecture of GHPs and underlying glacial and pre-glacial deposits. The data show gas hydrates, authigenic carbonates and free gas within the GHPs on top of gas chimneys piercing a thin section of low-permeability glacial-sediments. The chimneys connect to faults within the underlying tilted and folded fluid and gas hydrate bearing sedimentary rocks. Correlation of our data with regional 2D seismic surveys shows a spatial connection between the shallow subsurface fluid flow system and the deep-seated regional fault zone. We suggest that fault-controlled Paleocene hydrocarbon reservoirs inject methane into the low-permeability glacial deposits and near-seabed sediments, forming the GHPs. This conceptual model explains the existence of climate sensitive gas hydrate inventories and extensive seabed methane release observed along the Svalbard-Barents Sea margin.
author2 Waage, Malin
author Waage, Malin
author_facet Waage, Malin
author_sort Waage, Malin
title Replication Data for: Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin.
title_short Replication Data for: Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin.
title_full Replication Data for: Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin.
title_fullStr Replication Data for: Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin.
title_full_unstemmed Replication Data for: Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin.
title_sort replication data for: geological controls on fluid flow and gas hydrate pingo development on the barents sea margin.
publisher DataverseNO
url https://doi.org/10.18710/YWQZYV
long_lat ENVELOPE(15.865,15.865,76.979,76.979)
ENVELOPE(17.000,17.000,76.000,76.000)
geographic Arctic
Svalbard
Barents Sea
Hornsund
Storfjordrenna
geographic_facet Arctic
Svalbard
Barents Sea
Hornsund
Storfjordrenna
genre Arctic
Barents Sea
Hornsund
permafrost
Storfjordrenna
Svalbard
genre_facet Arctic
Barents Sea
Hornsund
permafrost
Storfjordrenna
Svalbard
op_relation https://doi.org/10.18710/YWQZYV
op_doi https://doi.org/10.18710/YWQZYV
_version_ 1766348579982540800