North Atlantic Late Miocene Stable-Isotope Stratigraphy, Biostratigraphy, and Magnetostratigraphy ...

Upper Miocene foraminiferal nannofossil ooze and chalk from DSDP Hole 552A in the northeast Atlantic Ocean have been closely sampled for biostratigraphic, paleomagnetic, and stable-isotopic studies. Sampling at 10-cm intervals resulted in an uppermost Miocene isotope stratigraphy with a 1000- to 300...

Full description

Bibliographic Details
Main Authors: Keigwin, L. D., Aubry, Marie-Pierre, Kent, Dennis V.
Format: Article in Journal/Newspaper
Language:unknown
Published: Columbia University 1987
Subjects:
Online Access:https://dx.doi.org/10.7916/d8zg72rw
https://academiccommons.columbia.edu/doi/10.7916/D8ZG72RW
Description
Summary:Upper Miocene foraminiferal nannofossil ooze and chalk from DSDP Hole 552A in the northeast Atlantic Ocean have been closely sampled for biostratigraphic, paleomagnetic, and stable-isotopic studies. Sampling at 10-cm intervals resulted in an uppermost Miocene isotope stratigraphy with a 1000- to 3000-yr. resolution. Covariance in benthic (Planulina wuellerstorfi) and planktonic (Globigerina bulloides) foraminiferal δ^O¸ records is taken as evidence for variability in continental ice volume. Our best estimate is that glacial maxima occurred at ~ 5.0 and ~ 5.5 Ma and lasted no more than 20,000 yrs. These events probably lowered sea level by 60 m below the latest Miocene average. There is little oxygen-isotope evidence, however, for a prolonged glaciation during the last 2 m.y. of the late Miocene. High- and low-frequency variability in the δ^13C record of foraminifers is useful for correlation among North Atlantic DSDP Sites 408, 410, 522, 610, and 611, and for correlation with sites in other oceans. Similar ...