Mechanisms for Taste Sensation of Carbonation

Carbonation, or the presence of carbon dioxide (CO2) dissolved in solution, is a commonly encountered feature of beverages in the contemporary human diet. While the popularity of carbonation may be attributed to its distinct sensory qualities, the specific orosensory pathways mediating CO2 detection...

Full description

Bibliographic Details
Main Author: Yarmolinsky, David
Format: Thesis
Language:unknown
Published: Columbia University 2014
Subjects:
Online Access:https://dx.doi.org/10.7916/d8rb72kd
https://academiccommons.columbia.edu/doi/10.7916/D8RB72KD
id ftdatacite:10.7916/d8rb72kd
record_format openpolar
spelling ftdatacite:10.7916/d8rb72kd 2023-05-15T15:53:04+02:00 Mechanisms for Taste Sensation of Carbonation Yarmolinsky, David 2014 https://dx.doi.org/10.7916/d8rb72kd https://academiccommons.columbia.edu/doi/10.7916/D8RB72KD unknown Columbia University Biology Neurosciences FOS Clinical medicine Theses Text article-journal ScholarlyArticle 2014 ftdatacite https://doi.org/10.7916/d8rb72kd 2021-11-05T12:55:41Z Carbonation, or the presence of carbon dioxide (CO2) dissolved in solution, is a commonly encountered feature of beverages in the contemporary human diet. While the popularity of carbonation may be attributed to its distinct sensory qualities, the specific orosensory pathways mediating CO2 detection in mammals have not previously been delineated. This dissertation describes the identification of specific cellular and molecular mechanisms that mediate taste sensation of carbonation, using the mouse as a model system. The mammalian gustatory system is sensitive to CO2, and these responses are sensitive to inhibition of carbonic anhydrases, enzymes that catalyze the interconversion of carbon dioxide with carbonic acid. Through gene expression profiling I discovered that the gene carbonic anhydrase IV (Car4), encoding an extracellular enzyme, is specifically expressed in acid sensing taste receptor cells (TRCs). Genetic ablation of the Car4 locus resulted in a major deficit in gustatory CO2 sensation that is stimulus specific, not affecting responses to acid. Ablation or silencing of acid sensing TRCs likewise produced a profound deficit in taste responses to CO2. These studies identified a primary pathway of the gustatory carbonation response, substantiating acid sensing TRC and the Car4 enzyme as key mediators. A smaller gustatory neural response to carbonation remains even in the absence of sour-sensing TRC and/or Car4. To identify additional carbonation sensing pathways, I applied an in vivo calcium-imaging assay to define the ensemble of primary gustatory neurons activated by CO2. These studies revealed that in addition to robust activation of sour sensing neurons, a secondary gustatory pathway for CO2 detection is mediated by subpopulations of bitter and sweet responsive neurons. I identified carbonic anhydrase VII (Car7) as an intracellular carbonic anhydrase specifically expressed by sweet, bitter and umami sensing TRC. Pharmacological and gene expression data support a role for Car7 in transducing the secondary CO2 sensing pathway. These studies suggested that carbonation acts as a complex gustatory stimulus, stimulating sour, sweet and bitter taste qualities simultaneously. The rules governing peripheral encoding of multi-modal taste stimuli are not well understood. To address this issue, I examined the peripheral gustatory response to binary mixtures of taste qualities. I found that most combinations of taste qualities are represented as a superimposition of the component responses. However, neural responses to attractive stimuli, including natural sugars, artificial sweeteners and umami tastants, are selectively suppressed by simultaneous co-stimulation with a sour (acidic) stimulus. Acid-mediated suppression of sweet is cell autonomous, occurring even in the absence of gustatory acid sensing. Remarkably, carbonation stimulates sour signaling without suppressing sweet taste response. These studies suggest that cross-modal interactions at the periphery modulate the sensory response to complex taste stimuli. Thesis Carbonic acid DataCite Metadata Store (German National Library of Science and Technology)
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language unknown
topic Biology
Neurosciences
FOS Clinical medicine
spellingShingle Biology
Neurosciences
FOS Clinical medicine
Yarmolinsky, David
Mechanisms for Taste Sensation of Carbonation
topic_facet Biology
Neurosciences
FOS Clinical medicine
description Carbonation, or the presence of carbon dioxide (CO2) dissolved in solution, is a commonly encountered feature of beverages in the contemporary human diet. While the popularity of carbonation may be attributed to its distinct sensory qualities, the specific orosensory pathways mediating CO2 detection in mammals have not previously been delineated. This dissertation describes the identification of specific cellular and molecular mechanisms that mediate taste sensation of carbonation, using the mouse as a model system. The mammalian gustatory system is sensitive to CO2, and these responses are sensitive to inhibition of carbonic anhydrases, enzymes that catalyze the interconversion of carbon dioxide with carbonic acid. Through gene expression profiling I discovered that the gene carbonic anhydrase IV (Car4), encoding an extracellular enzyme, is specifically expressed in acid sensing taste receptor cells (TRCs). Genetic ablation of the Car4 locus resulted in a major deficit in gustatory CO2 sensation that is stimulus specific, not affecting responses to acid. Ablation or silencing of acid sensing TRCs likewise produced a profound deficit in taste responses to CO2. These studies identified a primary pathway of the gustatory carbonation response, substantiating acid sensing TRC and the Car4 enzyme as key mediators. A smaller gustatory neural response to carbonation remains even in the absence of sour-sensing TRC and/or Car4. To identify additional carbonation sensing pathways, I applied an in vivo calcium-imaging assay to define the ensemble of primary gustatory neurons activated by CO2. These studies revealed that in addition to robust activation of sour sensing neurons, a secondary gustatory pathway for CO2 detection is mediated by subpopulations of bitter and sweet responsive neurons. I identified carbonic anhydrase VII (Car7) as an intracellular carbonic anhydrase specifically expressed by sweet, bitter and umami sensing TRC. Pharmacological and gene expression data support a role for Car7 in transducing the secondary CO2 sensing pathway. These studies suggested that carbonation acts as a complex gustatory stimulus, stimulating sour, sweet and bitter taste qualities simultaneously. The rules governing peripheral encoding of multi-modal taste stimuli are not well understood. To address this issue, I examined the peripheral gustatory response to binary mixtures of taste qualities. I found that most combinations of taste qualities are represented as a superimposition of the component responses. However, neural responses to attractive stimuli, including natural sugars, artificial sweeteners and umami tastants, are selectively suppressed by simultaneous co-stimulation with a sour (acidic) stimulus. Acid-mediated suppression of sweet is cell autonomous, occurring even in the absence of gustatory acid sensing. Remarkably, carbonation stimulates sour signaling without suppressing sweet taste response. These studies suggest that cross-modal interactions at the periphery modulate the sensory response to complex taste stimuli.
format Thesis
author Yarmolinsky, David
author_facet Yarmolinsky, David
author_sort Yarmolinsky, David
title Mechanisms for Taste Sensation of Carbonation
title_short Mechanisms for Taste Sensation of Carbonation
title_full Mechanisms for Taste Sensation of Carbonation
title_fullStr Mechanisms for Taste Sensation of Carbonation
title_full_unstemmed Mechanisms for Taste Sensation of Carbonation
title_sort mechanisms for taste sensation of carbonation
publisher Columbia University
publishDate 2014
url https://dx.doi.org/10.7916/d8rb72kd
https://academiccommons.columbia.edu/doi/10.7916/D8RB72KD
genre Carbonic acid
genre_facet Carbonic acid
op_doi https://doi.org/10.7916/d8rb72kd
_version_ 1766388136530673664