Nuclear Magnetic Resonance Investigations: Structure, Function, and Dynamics

PART I Carbon-13 nuclear magnetic resonance (nmr) spectroscopy has been used to investigate the chemical shifts and spin-lattice relaxation times (T1) of 13CO bound to two derivatives of protoheme IX. The chemical shift is a function of the nature of the ligand trans to the 13CO and of the solvent....

Full description

Bibliographic Details
Main Author: Perkins, Thomas Gardner
Format: Thesis
Language:English
Published: California Institute of Technology 1982
Subjects:
Online Access:https://dx.doi.org/10.7907/23sy-qt80
https://resolver.caltech.edu/CaltechTHESIS:05162018-141617618
id ftdatacite:10.7907/23sy-qt80
record_format openpolar
institution Open Polar
collection DataCite Metadata Store (German National Library of Science and Technology)
op_collection_id ftdatacite
language English
topic Chemistry
spellingShingle Chemistry
Perkins, Thomas Gardner
Nuclear Magnetic Resonance Investigations: Structure, Function, and Dynamics
topic_facet Chemistry
description PART I Carbon-13 nuclear magnetic resonance (nmr) spectroscopy has been used to investigate the chemical shifts and spin-lattice relaxation times (T1) of 13CO bound to two derivatives of protoheme IX. The chemical shift is a function of the nature of the ligand trans to the 13CO and of the solvent. T1 measurements of the complex 1-methylimidazole-protoheme IX dimethyl ester-13CO reveal that Chemical Shift Anisotropy (CSA) is the dominant relaxation mechanism for the heme bound 13CO. The aniostropy of the chemical shift tensor, Δσ, for the 13CO was found to be 584 ± 132 ppm. The chemical shifts are compared with those obtained for 13CO bound to the monomeric hemoglobin from the marine annelid Glycera dibranchiata. PART II Carbon-13 nuclear magnetic resonance (nmr) spectroscopy has been used to reinvestigate the spin-lattice relaxation times (T1) of 13CO bound to human hemoglobin (HbA) and sperm whale myoglobin. It has been found that the Chemical Shift Anisotropy (CSA) and Dipole-Dipole (D-D) relaxation mechanisms contribute to the observed T1 for the protein-bound 13CO. This observation can explain the lack of an observable nuclear Overhauser effect (NOE) for 13CO bound to HbA. A reanalysis of the previously determined relaxation times indicates that Δσ = 194 ± 37 ppm and reff = 1.81 ± 0.02 Å for 13CO bound to HbA. The significance of these results in relation to the postulated nucleophilic base interaction between the distal residue His-E7 and the protein bound CO is also discussed. PART III The spin-lattice relaxation (T1) times for 13CO bound to New Zealand white rabbit hemoglobin (HbR) and the monomeric hemoglobin from the marine annelid Glycera dibranchiata (Hb-II) have been investigated. It has been found that the anisotropies of the chemical shift tensor, Δσ, in each protein are vastly different. These results support the existence of a nucleophilic interaction between His-E7 and the heme-bound 13CO in HbR. In addition, the geometry and rate of internal motion for 13CO bound to HbR have also been obtained. PART IV The pH dependence of the carbon-13 nuclear magnetic resonance (nmr) chemical shift for the C-2 carbon of selectively carbon-13 enriched histidine biosynthetically incorporated into the catalytic triad of the serine protease, α-lytic protease, has been reinvestigated at three magnetic fields. The spectra acquired at all fields yield a value for 1J13C-H at pH ~ 5 which is consistent with full protonation of the active site imidazole ring of His57 at this pH. Hence, the catalytically important ionization of pKa ~ 6.7 can be assigned to His57. At 125.76 MHz and pH ≾ 5, the carbon-13 spectrum of the enriched enzyme reveals two other structural forms of the histidine side chain within the protein which are not observed at lower fields. The presence of these species can explain previous carbon-13 nmr results which yielded an abnormally low pKa value for the catalytic histidine. PART V A general method is presented for obtaining the exchange rates for chemical systems undergoing slow exchange on the nuclear magnetic resonance (nmr) timescale. As an example of the generality of the method, 31P nmr spectroscopy has been used to measure the rate of exchange for the system [chemical equation included in scanned thesis' Abstract, p. xvii]. The exchange rates obtained with this method are compared to those measured using lineshape analysis. PART VI The binding of (R,S) d5-ethanol (CD3CHDOD) to horse liver alcohol dehydrogenase (LADH) has been studied using 500.13 MHz 1H nuclear magnetic resonance (nmr) spectroscopy. In the presence of reduced nicotinamide adenine dinucleotide (NADH) the C-1 proton resonance moves such that the extrapolated chemical shift for the C-1 proton of the ethanol bound to the enzyme-coenzyme complex is shifted 0.82 ± 0.08 ppm upfield from the free ethanol resonance. The chemical shifts for the (R) and (S) hydrogens of the bound ethanol do not differ by more than 0.16 ppm. PART VII The structure of a formaldehyde-crosslinked dimer of verapamil, a Ca+2 channel blocker, has been determined using 500.3 MHz 1H nuclear magnetic resonance (nmr) spectra. The structure has been found to be asymmetric and, as with monomeric verapamil, possess a rigid conformation.
format Thesis
author Perkins, Thomas Gardner
author_facet Perkins, Thomas Gardner
author_sort Perkins, Thomas Gardner
title Nuclear Magnetic Resonance Investigations: Structure, Function, and Dynamics
title_short Nuclear Magnetic Resonance Investigations: Structure, Function, and Dynamics
title_full Nuclear Magnetic Resonance Investigations: Structure, Function, and Dynamics
title_fullStr Nuclear Magnetic Resonance Investigations: Structure, Function, and Dynamics
title_full_unstemmed Nuclear Magnetic Resonance Investigations: Structure, Function, and Dynamics
title_sort nuclear magnetic resonance investigations: structure, function, and dynamics
publisher California Institute of Technology
publishDate 1982
url https://dx.doi.org/10.7907/23sy-qt80
https://resolver.caltech.edu/CaltechTHESIS:05162018-141617618
geographic New Zealand
geographic_facet New Zealand
genre Sperm whale
genre_facet Sperm whale
op_rights No commercial reproduction, distribution, display or performance rights in this work are provided.
op_doi https://doi.org/10.7907/23sy-qt80
_version_ 1766208885529509888
spelling ftdatacite:10.7907/23sy-qt80 2023-05-15T18:26:55+02:00 Nuclear Magnetic Resonance Investigations: Structure, Function, and Dynamics Perkins, Thomas Gardner 1982 PDF https://dx.doi.org/10.7907/23sy-qt80 https://resolver.caltech.edu/CaltechTHESIS:05162018-141617618 en eng California Institute of Technology No commercial reproduction, distribution, display or performance rights in this work are provided. Chemistry Thesis Text Dissertation thesis 1982 ftdatacite https://doi.org/10.7907/23sy-qt80 2021-11-05T12:55:41Z PART I Carbon-13 nuclear magnetic resonance (nmr) spectroscopy has been used to investigate the chemical shifts and spin-lattice relaxation times (T1) of 13CO bound to two derivatives of protoheme IX. The chemical shift is a function of the nature of the ligand trans to the 13CO and of the solvent. T1 measurements of the complex 1-methylimidazole-protoheme IX dimethyl ester-13CO reveal that Chemical Shift Anisotropy (CSA) is the dominant relaxation mechanism for the heme bound 13CO. The aniostropy of the chemical shift tensor, Δσ, for the 13CO was found to be 584 ± 132 ppm. The chemical shifts are compared with those obtained for 13CO bound to the monomeric hemoglobin from the marine annelid Glycera dibranchiata. PART II Carbon-13 nuclear magnetic resonance (nmr) spectroscopy has been used to reinvestigate the spin-lattice relaxation times (T1) of 13CO bound to human hemoglobin (HbA) and sperm whale myoglobin. It has been found that the Chemical Shift Anisotropy (CSA) and Dipole-Dipole (D-D) relaxation mechanisms contribute to the observed T1 for the protein-bound 13CO. This observation can explain the lack of an observable nuclear Overhauser effect (NOE) for 13CO bound to HbA. A reanalysis of the previously determined relaxation times indicates that Δσ = 194 ± 37 ppm and reff = 1.81 ± 0.02 Å for 13CO bound to HbA. The significance of these results in relation to the postulated nucleophilic base interaction between the distal residue His-E7 and the protein bound CO is also discussed. PART III The spin-lattice relaxation (T1) times for 13CO bound to New Zealand white rabbit hemoglobin (HbR) and the monomeric hemoglobin from the marine annelid Glycera dibranchiata (Hb-II) have been investigated. It has been found that the anisotropies of the chemical shift tensor, Δσ, in each protein are vastly different. These results support the existence of a nucleophilic interaction between His-E7 and the heme-bound 13CO in HbR. In addition, the geometry and rate of internal motion for 13CO bound to HbR have also been obtained. PART IV The pH dependence of the carbon-13 nuclear magnetic resonance (nmr) chemical shift for the C-2 carbon of selectively carbon-13 enriched histidine biosynthetically incorporated into the catalytic triad of the serine protease, α-lytic protease, has been reinvestigated at three magnetic fields. The spectra acquired at all fields yield a value for 1J13C-H at pH ~ 5 which is consistent with full protonation of the active site imidazole ring of His57 at this pH. Hence, the catalytically important ionization of pKa ~ 6.7 can be assigned to His57. At 125.76 MHz and pH ≾ 5, the carbon-13 spectrum of the enriched enzyme reveals two other structural forms of the histidine side chain within the protein which are not observed at lower fields. The presence of these species can explain previous carbon-13 nmr results which yielded an abnormally low pKa value for the catalytic histidine. PART V A general method is presented for obtaining the exchange rates for chemical systems undergoing slow exchange on the nuclear magnetic resonance (nmr) timescale. As an example of the generality of the method, 31P nmr spectroscopy has been used to measure the rate of exchange for the system [chemical equation included in scanned thesis' Abstract, p. xvii]. The exchange rates obtained with this method are compared to those measured using lineshape analysis. PART VI The binding of (R,S) d5-ethanol (CD3CHDOD) to horse liver alcohol dehydrogenase (LADH) has been studied using 500.13 MHz 1H nuclear magnetic resonance (nmr) spectroscopy. In the presence of reduced nicotinamide adenine dinucleotide (NADH) the C-1 proton resonance moves such that the extrapolated chemical shift for the C-1 proton of the ethanol bound to the enzyme-coenzyme complex is shifted 0.82 ± 0.08 ppm upfield from the free ethanol resonance. The chemical shifts for the (R) and (S) hydrogens of the bound ethanol do not differ by more than 0.16 ppm. PART VII The structure of a formaldehyde-crosslinked dimer of verapamil, a Ca+2 channel blocker, has been determined using 500.3 MHz 1H nuclear magnetic resonance (nmr) spectra. The structure has been found to be asymmetric and, as with monomeric verapamil, possess a rigid conformation. Thesis Sperm whale DataCite Metadata Store (German National Library of Science and Technology) New Zealand